当前位置: X-MOL 学术Neurochem. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases
Neurochemistry international ( IF 4.4 ) Pub Date : 2017-07-18 , DOI: 10.1016/j.neuint.2017.07.007
Nivya Kolli , Ming Lu , Panchanan Maiti , Julien Rossignol , Gary L. Dunbar

Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases.



中文翻译:

基因编辑工具CRISPR-Cas9在治疗神经退行性疾病中的应用

来自受损DNA的转录蛋白积累的增加和DNA修复能力的降低,导致了许多缺乏有效治疗方法的神经系统疾病。基因编辑技术为替换与神经系统疾病相关的缺陷基因和DNA提供了新的希望。随着使用诸如锌指核酸酶(ZFNs),大范围核酸酶和转录激活因子样效应核酸酶(TALENs)等编辑工具的进步,科学家们能够设计DNA结合蛋白,从而可以进行精确的双链断裂( DSB)。与大多数其他基因编辑技术相比,CRISPR-Cas9基因编辑技术的最新发展已被证明更加精确和高效。两种方法,非同源末端连接(NHEJ)和同源直接修复(HDR),被用于CRISPR-Cas9系统中以有效切除缺陷基因并在目标位点掺入外源DNA。在这篇综述文章中,我们提供了CRISPR-Cas9方法的概述,包括其分子机制,重点是该基因编辑工具如何用于抵消与神经系统疾病相关的某些遗传缺陷。对这种新工具的详细了解可以帮助研究人员设计特定的基因编辑策略,以修复选择性神经系统疾病中的遗传性疾病。重点介绍了如何使用该基因编辑工具来抵消与神经系统疾病相关的某些遗传缺陷。对这种新工具的详细了解可以帮助研究人员设计特定的基因编辑策略,以修复选择性神经系统疾病中的遗传性疾病。重点介绍了如何使用该基因编辑工具来抵消与神经系统疾病相关的某些遗传缺陷。对这种新工具的详细了解可以帮助研究人员设计特定的基因编辑策略,以修复选择性神经系统疾病中的遗传性疾病。

更新日期:2017-07-18
down
wechat
bug