当前位置: X-MOL 学术Prog. Photovoltaics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconstructing photoluminescence spectra at liquid nitrogen temperature from heavily boron‐doped regions of crystalline silicon solar cells
Progress in Photovoltaics ( IF 8.0 ) Pub Date : 2017-11-10 , DOI: 10.1002/pip.2964
HuiTing Wu 1 , Hieu T. Nguyen 1 , AnYao Liu 1 , Daniel Macdonald 1
Affiliation  

When measured at low temperature (79 K), the photoluminescence (PL) spectra from silicon wafers containing a diffused heavily doped layer exhibit a second peak due to band gap narrowing in the diffused region. This work aims to decompose this peak into components arising from the various doping concentrations within the diffused layer. Whilst the peak position of silicon band‐to‐band PL spectra changes significantly with the doping concentration in silicon, the shape of the spectra also varies strongly with doping concentrations due to the broadening effects of band‐filling and band‐tail states. By measuring PL spectra on a range of uniformly heavily doped wafers, we show that these changes in spectral position and shape can be accurately modelled for doping concentrations above 1 × 1019 cm−3 using simple parameterisations, with minimal impact of variations in excitation intensity or injection level. This allows the PL spectra for a range of arbitrary doping concentrations to be reconstructed. We then show that the PL spectra from a thermally boron‐diffused wafer, in which the boron concentration changes with depth, can be reconstructed based on a superposition of PL spectra arising from the layers of different doping beneath the surface. Furthermore, the scaling factor for each layer can be accurately estimated based on the doping profile and the fraction of incident light absorbed in the layer.

中文翻译:

在液氮温度下从重硼掺杂的晶体硅太阳能电池区域重建光致发光光谱

当在低温(79 K)下测量时,由于扩散区域中的带隙变窄,包含扩散的重掺杂层的硅晶片的光致发光(PL)光谱显示出第二个峰。这项工作旨在将该峰分解为由扩散层内各种掺杂浓度引起的组分。虽然硅带间PL谱的峰值位置随硅中的掺杂浓度而显着变化,但由于带填充和带尾态的加宽效应,谱的形状也随掺杂浓度而变化很大。通过测量一系列均匀重掺杂晶片上的PL光谱,我们表明,对于1×10 19  cm以上的掺杂浓度,可以准确地模拟光谱位置和形状的这些变化−3使用简单的参数设置,对激发强度或注入水平变化的影响最小。这允许重构用于任意掺杂浓度范围的PL光谱。然后,我们表明,可以根据表面下不同掺杂层产生的PL光谱的叠加来重建来自硼扩散的晶圆的PL光谱,其中硼浓度随深度而变化。此外,可以基于掺杂分布和在该层中吸收的入射光的分数来精确地估计每个层的缩放因子。
更新日期:2017-11-10
down
wechat
bug