当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A practical wave-optical hemispheroidal nanostructure strategy for photonic-enhanced thin film solar cells
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.solmat.2017.08.037
Qian Huang , Xiaoyuan Lin , Yupeng Tong , Jian Ni , Li Zhang , Xiaonan Lu , Ying Zhao , Xiaodan Zhang

Abstract The interaction between light and wavelength-sized photonic nanostructure is highly promising for light management applied to thin-film photovoltaics (PVs). In this work, we put forward a practical wave-optical dielectric hemispheroidal nanostructure strategy under cost-effective anodic oxidation approach and substrate transfer method. By adjusting the oxidation voltage, periodic hemispheroidal nanostructure with diametral scale over 650 nm was obtained. Due to their wavelength-scale dimension, enhanced diffraction behavior and guided resonance were identified through finite-difference-time-domain (FDTD) simulation resulting in significant forward-scattering capabilities. The coherent optical performance was investigated experimentally and theoretically. To leverage the benefits of hemispheroidal nanostructure, amorphous silicon absorb layer and solar cell were fabricated. Compared with the planer structure, the developed hemispheroidal nanostructure could significantly improve the absorption of a-Si:H layer via light management with a 10.97% enhancement in the overall external quantum efficiency. Effective improvements in Voc and FF performances were also obtained in comparison to an etched AZO structure with high surface roughness. As the first demonstration, it was found that the hemispheroidal nanostructure by coating on the surface of a-Si:H thin film solar cells led to 7.79% and 7.38% enhancements respectively in overall energy conversion efficiency in comparison to the planar and the etched AZO structure.

中文翻译:

一种用于光子增强薄膜太阳能电池的实用波光半球形纳米结构策略

摘要 光与波长大小的光子纳米结构之间的相互作用对于应用于薄膜光伏 (PV) 的光管理非常有希望。在这项工作中,我们在具有成本效益的阳极氧化方法和衬底转移方法下提出了一种实用的波光介电半球形纳米结构策略。通过调节氧化电压,得到直径超过650 nm的周期性半球形纳米结构。由于它们的波长尺度维度,通过有限差分时域 (FDTD) 模拟确定了增强的衍射行为和引导共振,从而产生了显着的前向散射能力。通过实验和理论研究了相干光学性能。为了利用半球形纳米结构的优势,制作了非晶硅吸收层和太阳能电池。与平面结构相比,开发的半球形纳米结构可以通过光管理显着提高 a-Si:H 层的吸收,整体外量子效率提高 10.97%。与具有高表面粗糙度的蚀刻 AZO 结构相比,还获得了 Voc 和 FF 性能的有效改进。作为第一个演示,发现通过在 a-Si:H 薄膜太阳能电池表面涂覆的半球形纳米结构与平面和蚀刻 AZO 相比,整体能量转换效率分别提高了 7.79% 和 7.38%结构体。开发的半球形纳米结构可以通过光管理显着提高 a-Si:H 层的吸收,整体外量子效率提高 10.97%。与具有高表面粗糙度的蚀刻 AZO 结构相比,还获得了 Voc 和 FF 性能的有效改进。作为第一个演示,发现通过在 a-Si:H 薄膜太阳能电池表面涂覆的半球形纳米结构与平面和蚀刻 AZO 相比,整体能量转换效率分别提高了 7.79% 和 7.38%结构体。开发的半球形纳米结构可以通过光管理显着提高 a-Si:H 层的吸收,整体外量子效率提高 10.97%。与具有高表面粗糙度的蚀刻 AZO 结构相比,还获得了 Voc 和 FF 性能的有效改进。作为第一个演示,发现通过在 a-Si:H 薄膜太阳能电池表面涂覆的半球形纳米结构与平面和蚀刻 AZO 相比,整体能量转换效率分别提高了 7.79% 和 7.38%结构体。与具有高表面粗糙度的蚀刻 AZO 结构相比,还获得了 Voc 和 FF 性能的有效改进。作为第一个演示,发现通过在 a-Si:H 薄膜太阳能电池表面涂覆的半球形纳米结构与平面和蚀刻 AZO 相比,整体能量转换效率分别提高了 7.79% 和 7.38%结构体。与具有高表面粗糙度的蚀刻 AZO 结构相比,还获得了 Voc 和 FF 性能的有效改进。作为第一个演示,发现通过在 a-Si:H 薄膜太阳能电池表面涂覆的半球形纳米结构与平面和蚀刻 AZO 相比,整体能量转换效率分别提高了 7.79% 和 7.38%结构体。
更新日期:2018-03-01
down
wechat
bug