当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.jmbbm.2017.11.046
Hao-Yang Mi , Xin Jing , Emily Yu , Xiaofeng Wang , Qian Li , Lih-Sheng Turng

The success of blood vessel transplants with vascular scaffolds (VSs) highly depends on their structure and mechanical properties. The fabrication of small diameter vascular scaffolds (SDVSs) mimicking the properties of native blood vessels has been a challenge. Herein, we propose a facile method to fabricate thermoplastic polyurethane (TPU)/polycaprolactone (PCL) hybrid SDVSs via electrospinning using a modified rotating collector. By varying the ratio between the TPU and the PCL, and changing the electrospinning volume, SDVSs with a wavy configuration and different properties could be obtained. Detailed investigation revealed that certain TPU/PCL hybrid SDVSs closely resembled the mechanical behaviors of blood vessels due to the presence of a wavy region and the combination of flexible TPU and rigid PCL, which mimicked the properties of elastin and collagen in blood vessels. The fabricated TPU/PCL SDVSs achieved lumen diameters of 1–3 mm, wall thicknesses of 100–570 µm, circumferential moduli of 1–6 MPa, ultimate strengths of 2–8 MPa, over 250% elongation-at-break values, toe regions of 5.3–9.4%, high recoverability, and compliances close to those of human veins. Moreover, these TPU/PCL SDVSs possessed sufficient suture retention strength and burst pressure to fulfill transplantation requirements and maintain normal blood flow. Human endothelial cell culture revealed good biocompatibility of the scaffolds, and cells were able to grow on the inner surface of the tubular scaffolds, indicating promising prospects for use as tissue-engineered vascular grafts.



中文翻译:

使用组装的旋转收集器操纵通过静电纺丝制造的热塑性聚氨酯/聚己内酯杂化小直径血管支架的结构和力学性能

使用血管支架(VS)进行血管移植的成功很大程度上取决于其结构和机械性能。模仿天然血管特性的小直径血管支架(SDVS)的制造一直是一个挑战。在这里,我们提出了一种简便的方法,通过使用改进的旋转集电器通过电纺丝来制造热塑性聚氨酯(TPU)/聚己内酯(PCL)杂化SDVS。通过改变TPU和PCL之间的比例,并改变电纺丝量,可以获得具有波浪形配置和不同特性的SDVS。详细调查显示,某些TPU / PCL混合SDVS由于存在波浪区域以及柔性TPU和刚性PCL的结合,非常类似于血管的机械行为,模仿了弹性蛋白和胶原蛋白在血管中的特性。制成的TPU / PCL SDVS的管腔直径为1-3 mm,壁厚为100-570 µm,圆周模量为1-6 MPa,极限强度为2-8 MPa,断裂伸长率值超过250%,趾5.3-9.4%的区域,高可恢复性,顺应性接近人的静脉。而且,这些TPU / PCL SDVS具有足够的缝合线保持强度和破裂压力,可以满足移植要求并维持正常的血流。人内皮细胞培养物显示了支架的良好生物相容性,并且细胞能够在管状支架的内表面生长,这表明其有望用作组织工程化的血管移植物。壁厚为100–570 µm,圆周模量为1–6 MPa,极限强度为2–8 MPa,断裂伸长率值超过250%,趾部区域为5.3–9.4%,可恢复性高,并且柔韧性接近人的静脉。而且,这些TPU / PCL SDVS具有足够的缝合线保持强度和破裂压力,可以满足移植要求并维持正常的血流。人内皮细胞培养物显示了支架的良好生物相容性,并且细胞能够在管状支架的内表面生长,这表明其有望用作组织工程化的血管移植物。壁厚为100–570 µm,圆周模量为1–6 MPa,极限强度为2–8 MPa,断裂伸长率值超过250%,趾部区域为5.3–9.4%,可恢复性高,并且柔韧性接近人的静脉。而且,这些TPU / PCL SDVS具有足够的缝合线保持强度和破裂压力,可以满足移植要求并维持正常的血流。人内皮细胞培养物显示了支架的良好生物相容性,并且细胞能够在管状支架的内表面生长,这表明其有望用作组织工程化的血管移植物。而且,这些TPU / PCL SDVS具有足够的缝合线保持强度和破裂压力,可以满足移植要求并维持正常的血流。人内皮细胞培养物显示了支架的良好生物相容性,并且细胞能够在管状支架的内表面生长,这表明其有望用作组织工程化的血管移植物。而且,这些TPU / PCL SDVS具有足够的缝合线保持强度和破裂压力,可以满足移植要求并维持正常的血流。人内皮细胞培养物显示了支架的良好生物相容性,并且细胞能够在管状支架的内表面生长,这表明其有望用作组织工程化的血管移植物。

更新日期:2017-12-01
down
wechat
bug