当前位置: X-MOL 学术Intermetallics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring thermoelectric materials for renewable energy applications: The case of highly mismatched alloys based on AlBi 1-x Sb x and InBi 1-x Sb x
Intermetallics ( IF 4.4 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.intermet.2017.09.017
Bakhtiar Ul Haq , R. Ahmed , S. AlFaify , Faheem K. Butt , A. Shaari , A. Laref

Abstract The high throughput thermoelectric devices are considered promising futuristic energy source to control global warming and realize the dream of green energy and sustainable environment. The ability of the highly mismatched alloys (HMAs), to show the intriguing impact on the physical properties with controlled modifications, has extended their promise to thermoelectric applications. Here, we examine comprehensively the potential of the two prototypical HMAs such as AlBi 1- x Sb x and InBi 1- x Sb x for thermoelectric applications within density functional theory together with the Boltzmann transport theory. For comprehensive understanding, alloying of these materials has been performed over the entire composition range. From our calculations, we found, the replacement of Sb with Bi leads to a significant evolution in the energy band-gap and effective masses of the charge carriers that consequently deliver enhancement in thermoelectric response. Improvement of magnitude 1.25 eV and 0.986 eV has been respectively recorded in band-gaps of AlBi 1- x Sb x and InBi 1- x Sb x for the across composition alloying. Similarly, by the electronic-structure engineering of HMAs, thermoelectric properties such as, the Seebeck coefficients over Fermi-level were found to be improved from 82.90 μV/K to 107.52 μV/K for AlBi 1- x Sb x and 60.32 μV/K to 92.73 μV/K for InBi 1- x Sb x . As a result, the thermoelectric figure of merit (ZT) and power factor show considerable enhancement as a function of alloying composition for both alloys at room temperature. However, at a higher temperature, the thermal conductivity of these materials experience an exponential increase, results in lower ZT values. Overall, the observed evolution in the electronic structure and thermoelectric response for replacing Sb over Bi is significant in AlBi 1- x Sb x as compared to InBi 1- x Sb x . Hence, with the capability of significant and controlled evolution in electronic-structure and subsequent thermoelectric properties, HMAs particularly AlBi 1- x Sb x are believed potential candidates for thermoelectric applications.

中文翻译:

探索用于可再生能源应用的热电材料:基于 AlBi 1-x Sb x 和 InBi 1-x Sb x 的高度失配合金的案例

摘要 高通量热电装置被认为是控制全球变暖和实现绿色能源和可持续环境梦想的有前途的未来能源。高度失配合金 (HMA) 的能力,通过受控修改显示出对物理特性的有趣影响,已将它们的前景扩展到热电应用。在这里,我们全面研究了两种原型 HMA(例如 AlBi 1- x Sb x 和 InBi 1- x Sb x)在密度泛函理论和玻尔兹曼输运理论中的热电应用潜力。为了全面理解,已在整个成分范围内对这些材料进行合金化。根据我们的计算,我们发现,用 Bi 取代 Sb 导致能带隙和电荷载流子的有效质量发生显着变化,从而增强热电响应。对于跨成分合金化,AlBi 1- x Sb x 和 InBi 1- x Sb x 的带隙分别记录了 1.25 eV 和 0.986 eV 量级的改进。类似地,通过 HMA 的电子结构工程,发现费米能级上的塞贝克系数等热电性能从 AlBi 1- x Sb x 的 82.90 μV/K 提高到 107.52 μV/K 和 60.32 μV/K InBi 1- x Sb x 为 92.73 μV/K。结果,热电品质因数 (ZT) 和功率因数在室温下作为两种合金的合金成分的函数显示出相当大的增强。然而,在较高的温度下,这些材料的热导率呈指数增长,导致 ZT 值降低。总体而言,与 InBi 1- x Sb x 相比,在 AlBi 1- x Sb x 中观察到的用于取代 Bi 上的 Sb 的电子结构和热电响应的演变是显着的。因此,凭借在电子结构和随后的热电特性方面显着和受控演化的能力,HMAs 特别是 AlBi 1- x Sb x 被认为是热电应用的潜在候选者。
更新日期:2018-02-01
down
wechat
bug