当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Connecting the Mechanical and Conductive Properties of Conjugated Polymers
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2017-12-11 , DOI: 10.1002/aelm.201700356
Renxuan Xie 1 , Ralph H. Colby 2 , Enrique D. Gomez 1
Affiliation  

Both the mechanical deformability and electronic conductivity of conjugated polymers play important roles in the development of wearable and stretchable electronics. Despite the recent progress and emphasis on achieving highly stretchable and conductive devices, the correlation between the mechanical and conductive properties is poorly understood and remains mostly empirical. The future of flexible electronics relies on the ability to predict and tune the mechanical and conductive properties such that the molecular design of conjugated polymers can be optimized for various applications. Instead of seeking a direct correlation between mechanical and conductive properties, this Progress Report proposes to examine the common microstructural origin for mechanical performance and charge transport in conjugated polymers. Measurements of microstructural information, such as persistence length, chain entanglement, glass transition, liquid crystalline phase transition, and intercrystalline morphology, are desperately needed in the field of conjugated polymers in order to establish connections with both the mechanical/conductive properties and the chemical structures. Conventional experimental methods in the field of flexible polymer physics, such as linear viscoelastic rheometry, open up new avenues for characterizing these microstructural parameters, thereby providing a path toward predicting and designing the molecular structure of conjugated polymers with desired mechanical and conductive properties.

中文翻译:

连接共轭聚合物的机械和导电性能

共轭聚合物的机械可变形性和电子传导性在可穿戴和可拉伸电子产品的开发中都起着重要作用。尽管最近取得了进展,并着重于实现高度可拉伸的导电设备,但对机械性能和导电性能之间的相关性了解甚少,并且仍然是经验性的。柔性电子产品的未来取决于预测和调整机械和导电性能的能力,以便可以针对各种应用优化共轭聚合物的分子设计。本进展报告不是寻找机械性能和导电性能之间的直接关系,而是建议研究共轭聚合物中机械性能和电荷传输的常见微观结构起源。为了建立具有机械/导电性能和化学结构的连接,在共轭聚合物领域迫切需要测量微观结构信息,例如持久性长度,链缠结,玻璃化转变,液晶相变和晶间形态。 。柔性聚合物物理学领域的常规实验方法,例如线性粘弹性流变学,为表征这些微结构参数开辟了新途径,从而为预测和设计具有所需机械和导电性能的共轭聚合物的分子结构提供了一条途径。为了建立具有机械/导电性能和化学结构两者的连接,在共轭聚合物领域中迫切需要“聚合物”。柔性聚合物物理学领域的常规实验方法,例如线性粘弹性流变学,为表征这些微结构参数开辟了新途径,从而为预测和设计具有所需机械和导电性能的共轭聚合物的分子结构提供了一条途径。为了建立具有机械/导电性能和化学结构两者的连接,在共轭聚合物领域中迫切需要“聚合物”。柔性聚合物物理学领域的常规实验方法,例如线性粘弹性流变学,为表征这些微结构参数开辟了新途径,从而为预测和设计具有所需机械和导电性能的共轭聚合物的分子结构提供了一条途径。
更新日期:2017-12-11
down
wechat
bug