当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation†
Lab on a Chip ( IF 6.1 ) Pub Date : 2017-12-06 00:00:00 , DOI: 10.1039/c7lc01088e
Eric Y. Liu 1, 2, 3, 4 , Sukwon Jung 1, 2, 3, 4 , David A. Weitz 4, 5, 6, 7 , Hyunmin Yi 1, 2, 3, 4 , Chang-Hyung Choi 8, 9, 10, 11
Affiliation  

Chemically functional hydrogel microspheres hold significant potential in a range of applications including biosensing, drug delivery, and tissue engineering due to their high degree of flexibility in imparting a range of functions. In this work, we present a simple, efficient, and high-throughput capillary microfluidic approach for controlled fabrication of monodisperse and chemically functional hydrogel microspheres via formation of double emulsion drops with an ultra-thin oil shell as a sacrificial template. This method utilizes spontaneous dewetting of the oil phase upon polymerization and transfer into aqueous solution, resulting in poly(ethylene glycol) (PEG)-based microspheres containing primary amines (chitosan, CS) or carboxylates (acrylic acid, AA) for chemical functionality. Simple fluorescent labelling of the as-prepared microspheres shows the presence of abundant, uniformly distributed and readily tunable functional groups throughout the microspheres. Furthermore, we show the utility of chitosan's primary amine as an efficient conjugation handle at physiological pH due to its low pKa by direct comparison with other primary amines. We also report the utility of these microspheres in biomolecular conjugation using model fluorescent proteins, R-phycoerythrin (R-PE) and green fluorescent protein (GFPuv), via tetrazine–trans-cyclooctene (Tz–TCO) ligation for CS-PEG microspheres and carbodiimide chemistry for AA-PEG microspheres, respectively. The results show rapid coupling of R-PE with the microspheres' functional groups with minimal non-specific adsorption. In-depth protein conjugation kinetics studies with our microspheres highlight the differences in reaction and diffusion of R-PE with CS-PEG and AA-PEG microspheres. Finally, we demonstrate orthogonal one-pot protein conjugation of R-PE and GFPuv with CS-PEG and AA-PEG microspheres via simple size-based encoding. Combined, these results represent a significant advancement in the rapid and reliable fabrication of monodisperse and chemically functional hydrogel microspheres with tunable properties.

中文翻译:

高通量基于双乳液的水凝胶微球的微流体生产,具有可调节的生物分子偶联化学功能

具有化学功能的水凝胶微球由于在赋予一系列功能方面具有高度的灵活性,因此在包括生物传感,药物递送和组织工程在内的一系列应用中具有巨大的潜力。在这项工作中,我们提出了一种简单,高效,高通量的毛细管微流体方法,可通过以下方法控制制备单分散性和化学功能性水凝胶微球超薄油壳作为牺牲模板的双重乳液滴的形成。该方法利用聚合时油相的自然脱湿并转移到水溶液中,从而产生了基于聚乙二醇(PEG)的微球,其中含有伯胺(壳聚糖,CS)或羧酸盐(丙烯酸,AA)以实现化学功能。所制备的微球的简单荧光标记显示在整个微球中存在丰富,均匀分布且易于调节的官能团。此外,通过与其他伯胺的直接比较,我们发现壳聚糖的伯胺由于其低的pKa而在生理pH值下作为有效的偶联处理的实用性。我们还报告了这些微球在使用模型荧光蛋白的生物分子结合中的实用性,通过四嗪-反式-环辛烯(Tz-TCO)连接分别用于CS-PEG微球和碳二亚胺化学方法用于AA-PEG微球。结果表明,R-PE与微球的官能团快速偶联,具有最小的非特异性吸附。用我们的微球进行的深入蛋白质偶联动力学研究突显了R-PE与CS-PEG和AA-PEG微球在反应和扩散方面的差异。最后,我们通过简单的基于大小的编码,证明了CS-PEG和AA-PEG微球与R-PE和GFPuv的正交一锅蛋白偶联。结合起来,这些结果代表了具有可调性的单分散和化学功能性水凝胶微球的快速,可靠制造的重大进展。
更新日期:2017-12-06
down
wechat
bug