当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre
Nature Photonics ( IF 35.0 ) Pub Date : 2017-12-04 , DOI: 10.1038/s41566-017-0053-8
Ivo T. Leite , Sergey Turtaev , Xin Jiang , Martin Šiler , Alfred Cuschieri , Philip St. J. Russell , Tomáš Čižmár

Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.



中文翻译:

高数值孔径软玻璃多模光纤的三维全息光学操纵

全息光镊(HOT)在生物光子学中的许多应用中都具有广阔的前景,可以创建和测量生物分子,分子马达和细胞上的微小力。目前,HOT中使用的几何形状依赖于体光学器件,并且其体内的利用受到组织光学混浊性质的损害。我们提出了一种替代性的HOT方法,其中通过高数值孔径多模光纤引入了多个三维(3D)陷阱,从而能够通过具有与单个尺寸相当的横截面的通道进行同等通用的操作细胞。我们的工作演示了微对象的3D排列的实时操纵以及在其他无法访问的腔体内的操纵。我们表明,可以在超过100 mm的纤维长度上形成陷阱,并以纳米分辨率定位。这些结果为通过全息图通过深处在活组织内部和其他复杂环境中的单芯光纤内窥镜提供了全息处理和其他高数值孔径技术的基础,包括先进的显微镜技术。

更新日期:2017-12-05
down
wechat
bug