当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical Study of Sliding‐Electrification‐Gated Tribotronic Transistors and Logic Device
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2017-12-04 , DOI: 10.1002/aelm.201700337
Tao Jiang 1, 2 , Limin Zhang 1, 2 , Xu Zhang 3 , Chi Zhang 1, 2 , Wenbo Peng 4 , Tianxiao Xiao 1, 2 , Zhong Lin Wang 1, 2, 4
Affiliation  

Triboelectric nanogenerators (TENG) were invented as a highly effective technology for harvesting ambient mechanical energy. By coupling the TENG and metal‐oxide‐semiconductor field‐effect transistor, a new field of tribotronics has been recently proposed using the electrostatic potential created by triboelectrification as a gate voltage to tune/control charge‐carrier transport in semiconductors. In this work, the performance of a sliding‐electrification‐gated tribotronic transistor (SGT) and a sliding‐electrification‐gated tribotronic logic device (SGL) are theoretically investigated. The drain–source current characteristics for both the N‐channel SGT and P‐channel SGT are calculated in enhancement and depletion modes, respectively, which are found to be controlled by triboelectric charge amount, sliding distance, and drain voltage. By scaling down the conduction channel length to 10 nm, the SGT can still work and exhibit similar current characteristic and charge‐transfer process, showing the great potential of tribotronics in large‐scale array integration. Furthermore, the operation principle of a designed SGL based on two N‐channel SGTs in enhancement mode is revealed. This work could provide in‐depth understanding of physical mechanisms for tribotronic devices and design guidance for potential applications of tribotronics.

中文翻译:

滑动带电门式摩擦电子晶体管和逻辑器件的理论研究

摩擦电纳米发电机(TENG)被发明为一种用于收集环境机械能的高效技术。通过将TENG和金属氧化物半导体场效应晶体管相结合,最近提出了一个摩擦学电子学的新领域,它利用摩擦电化产生的静电势作为栅极电压来调节/控制半导体中的载流子传输。在这项工作中,从理论上研究了滑动电动门摩擦摩擦晶体管(SGT)和滑动电动门摩擦摩擦逻辑器件(SGL)的性能。N沟道SGT和P沟道SGT的漏极-源极电流特性分别在增强和耗尽模式下计算,发现它们受摩擦电荷量,滑动距离和漏极电压的控制。通过将传导通道长度缩减至10 nm,SGT仍可以工作并表现出相似的电流特性和电荷转移过程,从而显示了摩擦学电子在大规模阵列集成中的巨大潜力。此外,还揭示了在增强模式下基于两个N通道SGT设计的SGL的工作原理。这项工作可以为摩擦电子设备的物理机制提供深入的了解,并为摩擦电子的潜在应用提供设计指导。
更新日期:2017-12-04
down
wechat
bug