当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Effect of HCl and Steam on Cyclic CO 2 Capture Performance in Calcium Looping Systems
Chemical Engineering Science ( IF 4.7 ) Pub Date : 2017-08-01 , DOI: 10.1016/j.ces.2017.08.019
Robert T. Symonds , Dennis Y. Lu , Arturo Macchi , Robin W. Hughes , Edward J. Anthony

Abstract Calcium looping is CO 2 capture technology that is considered to be technically feasible at an industrial scale using a variety of fuels such as natural gas, coals, biomass, refuse derived fuels, and biofuels. Unfortunately, many of these fuels contain significant quantities of chlorine which principally converts to gaseous HCl during combustion or gasification. To date, very few studies have examined the effect of HCl on sorbent CO 2 capture performance using calcium-based sorbents under realistic carbonation and calcination conditions. In this work, experiments were conducted using thermogravimetric analysis and fixed bed reactor testing to determine the effect of HCl addition during carbonation and calcination over repeated cycles using a Canadian limestone. The presence of HCl was found to increase sorbent reactivity towards CO 2 capture when steam was injected during calcination. The resulting decomposition of CaCl 2 to CaO during calcination caused changes in the particle morphology, which in turn decreased the CO 2 diffusional resistance during carbonation. Fixed bed test results provided confirmation of full sorbent dechlorination under typical oxy-fuel calcination conditions. It was shown that both particle surface area and pore volume were higher during tests where HCl was present during carbonation and that greater than 99% HCl capture could be achieved without adversely affecting sorbent CO 2 capture performance when steam was present during both carbonation and calcination.

中文翻译:

HCl 和蒸汽对钙循环系统中循环 CO 2 捕集性能的影响

摘要 钙循环是 CO 2 捕获技术,被认为在工业规模上使用各种燃料(如天然气、煤、生物质、垃圾衍生燃料和生物燃料)在技术上是可行的。不幸的是,许多这些燃料含有大量的氯,在燃烧或气化过程中,氯主要转化为气态 HCl。迄今为止,很少有研究使用钙基吸附剂在实际碳酸化和煅烧条件下检查 HCl 对吸附剂 CO 2 捕获性能的影响。在这项工作中,使用热重分析和固定床反应器测试进行实验,以确定在使用加拿大石灰石重复循环的碳酸化和煅烧过程中添加 HCl 的影响。当在煅烧期间注入蒸汽时,发现HCl的存在增加吸附剂对CO 2 捕获的反应性。在煅烧过程中,CaCl 2 分解为 CaO 导致颗粒形态发生变化,从而降低了碳酸化过程中的 CO 2 扩散阻力。固定床测试结果证实了在典型的氧-燃料煅烧条件下完全吸附剂脱氯。结果表明,在碳酸化过程中存在 HCl 的测试过程中,颗粒表面积和孔体积都较高,并且当碳酸化和煅烧过程中都存在蒸汽时,可以实现大于 99% 的 HCl 捕获而不会对吸附剂 CO 2 捕获性能产生不利影响。在煅烧过程中,CaCl 2 分解为 CaO 导致颗粒形态发生变化,从而降低了碳酸化过程中的 CO 2 扩散阻力。固定床测试结果证实了在典型的氧-燃料煅烧条件下完全吸附剂脱氯。结果表明,在碳酸化过程中存在 HCl 的测试过程中,颗粒表面积和孔体积都较高,并且当碳酸化和煅烧过程中都存在蒸汽时,可以实现大于 99% 的 HCl 捕获而不会对吸附剂 CO 2 捕获性能产生不利影响。在煅烧过程中,CaCl 2 分解为 CaO 导致颗粒形态发生变化,从而降低了碳酸化过程中的 CO 2 扩散阻力。固定床测试结果证实了在典型的氧-燃料煅烧条件下完全吸附剂脱氯。结果表明,在碳酸化过程中存在 HCl 的测试过程中,颗粒表面积和孔体积都较高,并且当碳酸化和煅烧过程中都存在蒸汽时,可以实现大于 99% 的 HCl 捕获而不会对吸附剂 CO 2 捕获性能产生不利影响。
更新日期:2017-08-01
down
wechat
bug