当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2017-12-13 00:00:00 , DOI: 10.1021/acs.jctc.7b00991
Arobendo Mondal 1 , Michael W. Gaultois 2 , Andrew J. Pell 3 , Marcella Iannuzzi 4 , Clare P. Grey 2 , Jürg Hutter 4 , Martin Kaupp 1
Affiliation  

Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li3V2(PO4)3, for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

中文翻译:

使用CP2K大规模计算顺磁性固体的核磁共振位移

使用CP2K代码的高效高斯增强平面波实现,报告了扩展顺磁性固体(pNMR)的核磁共振(NMR)位移的大规模计算。可以将通过混合函数获得的超精细耦合与g张量和使用梯度校正函数计算的轨道屏蔽相结合,接触,伪接触和轨道位移对pNMR位移的影响是可访问的。由于CP2K具有高效且高度并行的性能,因此可以使用扩展的高斯基集研究具有大晶胞的多种材料。与典型的量子化学密码相比,首先对大型超级电池中的分子进行了对pNMR位移不同贡献的各种方法的验证。然后将其扩展到对g-张量的详细研究,这些g-张量用于扩展的固体过渡金属氟化物和一系列复杂的锂钒磷酸盐。最后,计算锂的pNMR锂位移3 V 2(PO 43,可获取详细的实验数据。这允许深入研究不同方法(例如,g张量的完整周期聚类计算和增量聚类计算,以及用于超精细计算的不同函数和基集),以及对pNMR位移的不同贡献的透彻分析。这项研究为顺磁性材料的NMR位移的更广泛的计算处理铺平了道路。
更新日期:2017-12-13
down
wechat
bug