当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Amorphous Tin‐Based Composite Oxide: A High‐Rate and Ultralong‐Life Sodium‐Ion‐Storage Material
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2017-11-27 , DOI: 10.1002/aenm.201701827
Xu Yang 1 , Rong-Yu Zhang 2 , Jing Zhao 1 , Zhi-Xuan Wei 1 , Dong-Xue Wang 1 , Xiao-Fei Bie 1 , Yu Gao 1 , Jia Wang 3 , Fei Du 1 , Gang Chen 1
Affiliation  

Energy‐storage technology is moving beyond lithium batteries to sodium as a result of its high abundance and low cost. However, this sensible transition requires the discovery of high‐rate and long‐lifespan anode materials, which remains a significant challenge. Here, the facile synthesis of an amorphous Sn2P2O7/reduced graphene oxide nanocomposite and its sodium storage performance between 0.01 and 3.0 V are reported for the first time. This hybrid electrode delivers a high specific capacity of 480 mA h g−1 at a current density of 50 mA g−1 and superior rate performance of 250 and 165 mA h g−1 at 2 and 10 A g−1, respectively. Strikingly, this anode can sustain 15 000 cycles while retaining over 70% of the initial capacity. Quantitative kinetic analysis reveals that the sodium storage is governed by pseudocapacitance, particularly at high current rates. A full cell with sodium super ionic conductor (NASICON)‐structured Na3V2(PO4)2F3 and Na3V2(PO4)3 as cathodes exhibits a high energy density of over 140 W h kg−1 and a power density of nearly 9000 W kg−1 as well as stability over 1000 cycles. This exceptional performance suggests that the present system is a promising power source for promoting the substantial use of low‐cost energy storage systems.

中文翻译:

非晶锡基复合氧化物:一种高速率,超长寿命的钠离子存储材料

由于其高丰度和低成本,储能技术正在从锂电池向钠盐发展。然而,这种明智的转变需要发现高速率和长寿命的阳极材料,这仍然是一个巨大的挑战。在此,首次报道了无定形的Sn 2 P 2 O 7 /还原的氧化石墨烯纳米复合物的简便合成及其钠存储性能在0.01和3.0 V之间。该混合电极在50 mA g -1的电流密度下可提供480 mA hg -1的高比容量,在2 A和10 A g -1时可提供250和165 mA hg -1的优异速率性能, 分别。令人惊讶的是,该阳极可以维持15 000次循环,同时保留超过70%的初始容量。定量动力学分析表明,钠存储受假电容控制,特别是在高电流速率下。具有钠超离子导体(NASICON)结构的Na 3 V 2(PO 42 F 3和Na 3 V 2(PO 43作为阴极的完整电池表现出超过140 W h kg -1的高能量密度,并且功率密度接近9000 W kg -1以及超过1000个周期的稳定性。这种出色的性能表明,本系统是促进大量使用低成本储能系统的有前途的动力源。
更新日期:2017-11-27
down
wechat
bug