当前位置: X-MOL 学术Top. Curr. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation
Topics in Current Chemistry ( IF 7.1 ) Pub Date : 2017-11-27 , DOI: 10.1007/s41061-017-0175-y
Yong Chen , Li-ping Sun , Zhi-hui Liu , Greg Martin , Zheng Sun

Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.



中文翻译:

整合废料回收,通过藻类培养实现化学品和材料的可持续生产

在全球范围内,废物管理问题日益严重。微藻有潜力帮助去除各种废物流中的污染物,并将其转化为有用的生物质。本文对使用不同类型废物生长的微藻类生产化学物质和其他材料的最新技术发展进行了重要的回顾。研究了一系列有效捕获CO 2的新颖方法通过光合作用微藻培养产生的烟气中。考虑到与生产方式有关的使用微藻类吸收废水中的氮,有机碳,磷和金属离子的策略。通常,比起更昂贵的封闭式光生物反应器系统,更经济的开放式栽培系统(如水道池)更适合废物转化,后者可能已用于更高价值的产品。相对于其利用,讨论了培养方法和废物流性质对微藻生物质组成的影响。可能性包括通过脂质提取生产生物柴油,水热液化产生的生物原油以及微生物转化产生的生物乙醇或沼气。从废物中产生的微藻生物质也可用于更高价值的应用中,包括蛋白质饲料或用于生产生物活性化合物(如虾青素或omega-3脂肪酸)。但是,对于某些废物流,对于食品或健康应用,还需要进一步考虑如何管理潜在的微生物和化学污染物。将微藻用于废物增值具有广阔的前景。可用技术的广泛实施可能将伴随着进一步的改进以降低成本,以及有效管理废物的压力不断增加。食品或健康应用需要进一步考虑如何管理潜在的微生物和化学污染物。将微藻用于废物增值具有广阔的前景。进一步的改进以降低成本,以及有效管理废物的压力不断增加,将可能导致可用技术的广泛实施。食品或健康应用需要进一步考虑如何管理潜在的微生物和化学污染物。将微藻用于废物增值具有广阔的前景。进一步的改进以降低成本,以及有效管理废物的压力不断增加,将可能导致可用技术的广泛实施。

更新日期:2017-11-27
down
wechat
bug