当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetically Controlled Coprecipitation for General Fast Synthesis of Sandwiched Metal Hydroxide Nanosheets/Graphene Composites toward Efficient Water Splitting
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2017-11-22 , DOI: 10.1002/adfm.201704594
Tang Tang 1, 2 , Wen-Jie Jiang 2, 3 , Shuai Niu 2 , Ning Liu 4 , Hao Luo 2 , Qiang Zhang 1 , Wu Wen 1 , Yu-Yun Chen 2 , Lin-Bo Huang 2 , Feng Gao 1 , Jin-Song Hu 2, 4
Affiliation  

The development of cost‐effective and applicable strategies for producing efficient oxygen evolution reaction (OER) electrocatalysts is crucial to advance electrochemical water splitting. Herein, a kinetically controlled room‐temperature coprecipitation is developed as a general strategy to produce a variety of sandwich‐type metal hydroxide/graphene composites. Specifically, well‐defined α‐phase nickel cobalt hydroxide nanosheets are vertically assembled on the entire graphene surface (NiCo‐HS@G) to provide plenty of accessible active sites and enable facile gas escaping. The tight contact between NiCo‐HS and graphene promises effective electron transfer and remarkable durability. It is discovered that Ni doping adjusts the nanosheet morphology to augment active sites and effectively modulates the electronic structure of Co center to favor the adsorption of oxygen species. Consequently, NiCo‐HS@G exhibits superior electrocatalytic activity and durability for OER with a very low overpotential of 259 mV at 10 mA cm−2. Furthermore, a practical water electrolyzer demonstrates a small cell voltage of 1.51 V to stably achieve the current density of 10 mA cm−2, and 1.68 V to 50 mA cm−2. Such superior electrocatalytic performance indicates that this facile and manageable strategy with low energy consumption may open up opportunities for the cost‐effective mass production of various metal hydroxides/graphene nanocomposites with desirable morphology and competing performance for diverse applications.

中文翻译:

动力学控制的共沉淀法,用于快速将夹心金属氢氧化物纳米片/石墨烯复合材料快速合成为有效的水分解剂

开发具有成本效益的适用策略以生产有效的氧释放反应(OER)电催化剂对推进电化学水分解至关重要。在本文中,开发了一种动力学控制的室温共沉淀技术,以生产各种夹心型金属氢氧化物/石墨烯复合材料。具体而言,定义明确的α相氢氧化钴镍纳米片垂直组装在整个石墨烯表面(NiCo-HS @ G)上,以提供大量可及的活性位点,并易于逸出气体。NiCo-HS与石墨烯之间的紧密接触保证了有效的电子转移和出色的耐久性。发现Ni掺杂调节纳米片的形态以增加活性位点并有效地调节Co中心的电子结构以利于氧的吸附。因此,NiCo-HS @ G对OER具有出色的电催化活性和耐久性,在10 mA cm时的过电势极低,仅为259 mV−2。此外,实用的水电解槽显示1.51V的小电池电压以稳定地实现10mA cm -2的电流密度和1.68V至50mA cm -2的电流密度。如此优异的电催化性能表明,这种简便易行且能耗低的策略可能为具有成本效益的大量生产具有各种所需形态和竞争性能的各种金属氢氧化物/石墨烯纳米复合材料提供机会。
更新日期:2017-11-22
down
wechat
bug