当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2017-11-20 , DOI: 10.1038/s41565-017-0002-1
Jack C. Gartside , Daan M. Arroo , David M. Burn , Victoria L. Bemmer , Andy Moskalenko , Lesley F. Cohen , Will R. Branford

Arrays of non-interacting nanomagnets are widespread in data storage and processing. As current technologies approach fundamental limits on size and thermal stability, enhancing functionality through embracing the strong interactions present at high array densities becomes attractive. In this respect, artificial spin ices are geometrically frustrated magnetic metamaterials that offer vast untapped potential due to their unique microstate landscapes, with intriguing prospects in applications from reconfigurable logic to magnonic devices or hardware neural networks. However, progress in such systems is impeded by the inability to access more than a fraction of the total microstate space. Here, we demonstrate that topological defect-driven magnetic writing—a scanning probe technique—provides access to all of the possible microstates in artificial spin ices and related arrays of nanomagnets. We create previously elusive configurations such as the spin-crystal ground state of artificial kagome dipolar spin ices and high-energy, low-entropy ‘monopole-chain’ states that exhibit negative effective temperatures.

中文翻译:

通过拓扑缺陷驱动的磁写法在人工kagome自旋冰中实现基态

非相互作用纳米磁体的阵列广泛用于数据存储和处理。随着当前技术接近于尺寸和热稳定性的基本限制,通过拥抱高阵列密度下存在的强相互作用来增强功能变得有吸引力。在这方面,人造自旋冰是几何上受挫的磁性超材料,由于其独特的微状态景观而具有巨大的未开发潜力,从可重构逻辑到大型电子设备或硬件神经网络的应用前景诱人。但是,由于无法访问整个微状态空间的一小部分,因此阻碍了此类系统的发展。这里,我们证明了拓扑缺陷驱动的磁性写入(一种扫描探针技术)可提供对人造自旋冰和纳米磁铁相关阵列中所有可能的微状态的访问。我们创建了以前难以捉摸的配置,例如人造kagome偶极自旋冰的自旋晶体基态和表现出负有效温度的高能,低熵“单极链”态。
更新日期:2017-11-21
down
wechat
bug