当前位置: X-MOL 学术Analyst › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering high-performance hairpin stacking circuits for logic gate operation and highly sensitive biosensing assay of microRNA
Analyst ( IF 3.6 ) Pub Date : 2017-11-06 00:00:00 , DOI: 10.1039/c7an01624g
Yueli Xing 1, 2 , Xinmin Li 2, 3, 4, 5, 6 , Taixian Yuan 2, 3, 4, 5, 6 , Wei Cheng 2, 6, 7 , Dandan Li 2, 3, 4, 5, 6 , Tianxiao Yu 2, 3, 4, 5, 6 , Xiaojuan Ding 2, 3, 4, 5, 6 , Shijia Ding 2, 3, 4, 5, 6
Affiliation  

Recently, hairpin stacking circuits (HSC) based on toehold-mediated strand displacement have been engineered to detect nucleic acids and proteins. However, the three metastable hairpins in a HSC system can potentially react non-specifically in the absence of a catalyst, limiting its practical application. Here, we developed a unique hairpin design guideline to eliminate circuit leakage of HSC, and the high-performance HSC was successfully implemented on logic gate building and biosensing. We began by analyzing the sources of circuit leakage and optimizing the toehold lengths of hairpins in the HSC system based on the surface plasmon resonance (SPR) technique. Next, a novel strategy of substituting two nucleotides in a specific domain, termed ‘loop-domain substitution’, was introduced to eliminate leakages. We also systematically altered the positions and numbers of the introduced substitutions to probe their potential contribution to circuit leakage suppression. Through these efforts, the circuit leakage of HSC was significantly reduced. Finally, by designing different DNA input strands, the logic gates could be activated to achieve the output signal. Using miRNA as a model analyte, this strategy could detect miRNA down to pM levels with minimized circuit leakage. We believe these work indicate significant progress in the DNA circuitry.

中文翻译:

设计高性能发夹堆叠电路,用于逻辑门操作和microRNA的高灵敏生物传感测定

最近,基于脚趾介导的链置换的发夹堆叠电路(HSC)已被设计用于检测核酸和蛋白质。但是,HSC系统中的三个亚稳发夹可能会在没有催化剂的情况下发生非特异性反应,从而限制了其实际应用。在这里,我们制定了独特的发夹设计指南,以消除HSC的电路泄漏,并且高性能HSC已在逻辑门构建和生物传感上成功实现。我们首先分析了电路泄漏的来源,并基于表面等离振子共振(SPR)技术优化了HSC系统中发夹的前额长度。接下来,引入了一种新的策略来取代特定域中的两个核苷酸,称为“环域取代”,以消除泄漏。我们还系统地更改了所引入替代的位置和数量,以探讨其对电路泄漏抑制的潜在影响。通过这些努力,HSC的电路泄漏大大减少了。最后,通过设计不同的DNA输入链,可以激活逻辑门以实现输出信号。使用miRNA作为模型分析物,该策略可以检测到pM水平的miRNA,并且电路泄漏最小。我们相信这些工作表明了DNA电路的重大进展。使用miRNA作为模型分析物,该策略可以检测到pM水平的miRNA,并且电路泄漏最小。我们相信这些工作表明了DNA电路的重大进展。使用miRNA作为模型分析物,该策略可以检测到pM水平的miRNA,并且电路泄漏最小。我们相信这些工作表明了DNA电路的重大进展。
更新日期:2017-11-21
down
wechat
bug