当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing Two-Dimensional Dirac Heterointerfaces of Few-Layer Graphene and Tetradymite-Type Sb2Te3 for Thermoelectric Applications
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-11-17 00:00:00 , DOI: 10.1021/acsami.7b09805
Woosun Jang 1 , Jiwoo Lee 1 , Chihun In 1 , Hyunyong Choi 1 , Aloysius Soon 1
Affiliation  

Despite the ubiquitous nature of the Peltier effect in low-dimensional thermoelectric devices, the influence of finite temperature on the electronic structure and transport in the Dirac heterointerfaces of the few-layer graphene and layered tetradymite, Sb2Te3 (which coincidently have excellent thermoelectric properties) are not well understood. In this work, using the first-principles density-functional theory calculations, we investigate the detailed atomic and electronic structure of these Dirac heterointerfaces of graphene and Sb2Te3 and further re-examine the effect of finite temperature on the electronic band structures using a phenomenological temperature-broadening model based on Fermi–Dirac statistics. We then proceed to understand the underlying charge redistribution process in this Dirac heterointerfaces and through solving the Boltzmann transport equation, we present the theoretical evidence of electron–hole asymmetry in its electrical conductivity as a consequence of this charge redistribution mechanism. We finally propose that the hexagonal-stacked Dirac heterointerfaces are useful as efficient p–n junction building blocks in the next-generation thermoelectric devices where the electron–hole asymmetry promotes the thermoelectric transport by “hot” excited charge carriers.

中文翻译:

设计用于热电应用的少量石墨烯和四方型Sb 2 Te 3的维狄拉克异质界面

尽管珀尔帖效应在低维热电器件中无处不在,但有限温度对几层石墨烯和层状四方沸石Sb 2 Te 3(恰好具有出色的热电性能)的狄拉克异质界面中电子结构和输运的影响属性)还没有被很好地理解。在这项工作中,使用第一性原理密度泛函理论计算,我们研究了石墨烯和Sb 2 Te 3的这些Dirac异质界面的详细原子和电子结构。并使用基于费米-狄拉克(Fermi–Dirac)统计的现象学温度扩展模型,重新检验有限温度对电子能带结构的影响。然后,我们继续了解该Dirac异质界面中潜在的电荷重新分布过程,并通过解决玻耳兹曼输运方程,由于这种电荷重新分布机制,我们给出了电子-空穴不对称性的理论证据。我们最后提出,六角形堆积的狄拉克异质界面可用作下一代热电设备中有效的p–n结构建块,其中电子-空穴不对称性通过“热”激发的电荷载流子促进了热电传输。
更新日期:2017-11-19
down
wechat
bug