当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures
ACS Nano ( IF 15.8 ) Pub Date : 2017-11-17 00:00:00 , DOI: 10.1021/acsnano.7b06371
Pengwei Wang 1 , Tianyi Zhao 1 , Ruixin Bian 1 , Guangyan Wang 1 , Huan Liu 1
Affiliation  

Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

中文翻译:

具有荷叶模拟多尺度层次结构的坚固的超疏水碳纳米管薄膜

超疏水碳纳米管(CNT)膜在通用应用中表现出许多令人着迷的性能,尤其是对于那些涉及固/液界面过程的膜,因为它们能够影响界面处的材料/能量转移。因此,在过去的几十年中,开发超疏水性的​​CNT引起了广泛的研究兴趣,这可以通过低自由能材料的表面涂层或通过各种复杂的方法构建微/纳米级结构来实现。迄今为止,开发一种简单的方法来制备稳定的超疏水性CNT仍然是一个挑战,因为毛细作用力诱导的聚结在与液体相互作用时经常发生。在这里,从荷叶中汲取灵感,我们提出了一种简单的一步化学气相沉积方法,该方法具有可编程的可控制气流,可以直接制造具有相当稳定的超疏水性的​​CNT膜,该膜可以有效地防止甚至很小的水滴渗透到该膜中。强大的超疏水性归因于CNT膜的典型荷叶状微/纳米级分层表面结构,其中许多由纠缠的纳米管组成的微尺度簇随机地从下层排列的纳米管中伸出。因此,双尺度的气穴被困在每个微尺度的CNT簇内和之间,这会大大减少液/固界面,从而导致卡西状态。而且,长时间暴露在空气中,甚至暴露在宽pH值的腐蚀性液体中后,CNT膜的超疏水性也显示出优异的耐久性。我们设想开发的方法对于多种物理化学界面过程(例如减阻,电化学催化,防冰和生物传感器)是有利的。
更新日期:2017-11-19
down
wechat
bug