当前位置: X-MOL 学术Electrochem. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene oxide based photocathode for split photoelectrochemical bioanalysis
Electrochemistry Communications ( IF 5.4 ) Pub Date : 2017-11-16 , DOI: 10.1016/j.elecom.2017.11.014
Fang Li , Jun-Xian Shu , Tian-Tian Gu , Xiuming Wu , Yuming Dong , Guang-Li Wang

In contrast to the many studies employing heavy-metal-containing semiconductors in state-of-the-art photoelectrochemistry, this work presents the first use of graphene oxide (GO) for advanced cathodic PEC analysis. The bioinspired redox reaction between GO and dopamine (DA) led to the formation of reduced GO (RGO) and the simultaneous deposition of the electron acceptor poly(dopamine) on RGO. This greatly stimulated the cathodic photocurrent of the GO-modified indium tin oxide (ITO) (ITO/GO) electrode, making it possible to detect DA rapidly and sensitively through a split photoelectrochemistry strategy (i.e. the reaction between the analyte and the photoelectrode and the recording of the photocurrent signal are conducted in separate devices). This study indicates the great promise of GO by demonstrating an elegant sensing strategy involving an in situ redox reaction followed by PEC analysis. It is hoped that this may open up the exploration of carbon nanomaterials for innovative cathodic photoelectrochemistry in the future.



中文翻译:

基于氧化石墨烯的光电阴极用于拆分光电化学生物分析

与许多在最先进的光电化学技术中使用含重金属的半导体的研究相反,这项工作提出了将氧化石墨烯(GO)首次用于高级阴极PEC分析的方法。GO和多巴胺(DA)之间受生物启发的氧化还原反应导致还原的GO(RGO)的形成,并且电子受体多巴胺同时沉积在RGO上。这极大地刺激了GO修饰的铟锡氧化物(ITO)(ITO / GO)电极的阴极光电流,从而可以通过拆分光电化学策略(即分析物与光电极之间的反应以及光电流信号的记录是在单独的设备中进行的)。这项研究通过演示涉及原位氧化还原反应然后进行PEC分析的优雅传感策略,表明了GO的巨大前景。希望这可能会在将来开拓用于创新阴极光电化学的碳纳米材料的探索。

更新日期:2017-11-16
down
wechat
bug