当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2017-11-16 00:00:00 , DOI: 10.1021/acsami.7b14887
Cheng Zhang 1 , Jheng-Wun Su 1 , Heng Deng 1 , Yunchao Xie 1 , Zheng Yan 1 , Jian Lin 1
Affiliation  

An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as “flower”, “rainbow”, “sunglasses”, “box”, “pyramid”, “grating”, and “armchair”. The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.

中文翻译:

响应性聚合物驱动的3D架构的可逆自组装

具有定义的配置的三维(3D)体系结构的组装在广泛的领域中具有重要的应用。在构造3D结构的各种方法中,应力驱动的装配体提供了以各种功能材料创建具有独特优点的3D架构的能力。但是,通过以前的方法构建的3D架构很简单,不可逆或不是独立的。此外,用于组装的基板保持平坦,因此不作为最终3D体系结构的一部分。在这里,我们报告了由具有可编程几何形状的智能聚合物基板的自折叠致动的各种独立式3D体系结构的可逆自组装。经过精心设计的聚合物基材可以响应外部刺激,例如有机溶剂,启动3D组装过程,并随后成为最终3D体系结构的一部分。通过直接激光写入图案化的折纸和激进折纸设计,高度可控制自组装过程。自组装的几何形状包括3D架构,例如“花”,“彩虹”,“太阳镜”,“盒子”,“金字塔”,“光栅”和“扶手椅”。报道的自组装还显示出对包括环氧树脂,聚酰亚胺,激光诱导的石墨烯和金属膜在内的各种材料的广泛适用性。该设备的示例包括与微发光二极管和挠性传感器集成的3D架构,表明了在软机器人,生物电子,微机电系统等领域的潜在应用。通过直接激光写入图案化的折纸和激进折纸设计,高度可控制自组装过程。自组装的几何形状包括3D架构,例如“花”,“彩虹”,“太阳镜”,“盒子”,“金字塔”,“光栅”和“扶手椅”。报道的自组装还显示出对包括环氧树脂,聚酰亚胺,激光诱导的石墨烯和金属膜在内的各种材料的广泛适用性。该设备的示例包括与微发光二极管和挠性传感器集成的3D架构,表明了在软机器人,生物电子,微机电系统等领域的潜在应用。通过直接激光写入图案化的折纸和激进折纸设计,高度可控制自组装过程。自组装的几何形状包括3D架构,例如“花”,“彩虹”,“太阳镜”,“盒子”,“金字塔”,“光栅”和“扶手椅”。报道的自组装还显示出对包括环氧树脂,聚酰亚胺,激光诱导的石墨烯和金属膜在内的各种材料的广泛适用性。该设备的示例包括与微发光二极管和挠性传感器集成的3D架构,表明了在软机器人,生物电子,微机电系统等领域的潜在应用。报道的自组装还显示出对包括环氧树脂,聚酰亚胺,激光诱导的石墨烯和金属膜在内的各种材料的广泛适用性。该设备的示例包括与微发光二极管和挠性传感器集成的3D架构,表明了在软机器人,生物电子,微机电系统等领域的潜在应用。报道的自组装还显示出对包括环氧树脂,聚酰亚胺,激光诱导的石墨烯和金属膜在内的各种材料的广泛适用性。该设备的示例包括与微发光二极管和挠性传感器集成的3D架构,表明了在软机器人,生物电子,微机电系统等领域的潜在应用。
更新日期:2017-11-17
down
wechat
bug