当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamically Gas‐Phase Switchable Super(de)wetting States by Reversible Amphiphilic Functionalization: A Powerful Approach for Smart Fluid Gating Membranes
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2017-11-16 , DOI: 10.1002/adfm.201704423
William S. Y. Wong 1 , Thomas Gengenbach 2 , Hieu T. Nguyen 3 , Xiang Gao 1 , Vincent S. J. Craig 4 , Antonio Tricoli 1
Affiliation  

In nature, cellular membranes perform critical functions such as endocytosis and exocytosis through smart fluid gating processes mediated by nonspecific amphiphilic interactions. Despite considerable progress, artificial fluid gating membranes still rely on laborious stimuli‐responsive mechanisms and triggering systems. In this study, a room temperature gas‐phase approach is presented for dynamically switching a porous material from a superhydrophobic to a superhydrophilic wetting state and back. This is realized by the reversible attachment of bipolar amphiphiles, which promote surface wetting. Application of this reversible amphiphilic functionalization to an impermeable nanofibrous membrane induces a temporary state of superhydrophilicity resulting in its pressure‐less permeation. This mechanism allows for rapid smart fluid gating processes that can be triggered at room temperature by variations in the environment of the membrane. Owing to the universal adsorption of volatile amphiphiles on surfaces, this approach is applicable to a broad range of materials and geometries enabling facile fabrication of valve‐less flow systems, fluid‐erasable microfluidic arrays, and sophisticated microfluidic designs.

中文翻译:

可逆两亲功能可动态改变气相的超(去)湿态:一种智能流体门控膜的有效方法

实际上,细胞膜通过由非特异性两亲相互作用介导的智能流体门控过程执行关键功能,例如胞吞作用和胞吐作用。尽管取得了长足的进步,但人工流体门控膜仍然依靠费力的刺激响应机制和触发系统。在这项研究中,提出了一种室温气相方法,用于动态地将多孔材料从超疏水状态转变为超亲水状态,然后再切换回去。这是通过双极性两亲性分子的可逆附着而实现的,它促进了表面润湿。这种不可逆的两亲功能化作用在不可渗透的纳米纤维膜上的应用会导致超亲水性的暂时状态,从而导致其无压力的渗透。该机制允许快速智能的流体门控过程,该过程可以在室温下通过膜环境的变化来触发。由于挥发性两亲物在表面上的普遍吸附,因此该方法适用于广泛的材料和几何形状,从而可以轻松制造无阀流动系统,流体可擦掉的微流控阵列以及复杂的微流控设计。
更新日期:2017-11-16
down
wechat
bug