当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-parameter scaling and maximum entropy inside disordered one-dimensional systems: Theory and experiment
Physical Review B ( IF 3.2 ) Pub Date : 2017-11-16 00:00:00 , DOI: 10.1103/physrevb.96.180203
Xiaojun Cheng , Xujun Ma , Miztli Yépez , Azriel Z. Genack , Pier A. Mello

The single-parameter scaling hypothesis relating the average and variance of the logarithm of the conductance is a pillar of the theory of electronic transport. We use a maximum-entropy ansatz to explore the logarithm of the particle, or energy density lnW(x) at a depth x into a random one-dimensional system. Single-parameter scaling would be the special case in which x=L (the system length). We find the result, confirmed in microwave measurements and computer simulations, that the average of lnW(x) is independent of L and equal to x/, with the mean free path. At the beginning of the sample, var[lnW(x)] rises linearly with x and is also independent of L, with a sublinear increase and then a drop near the sample output. At x=L we find a correction to the value of var[lnT] predicted by single-parameter scaling.

中文翻译:

一维无序系统中的单参数缩放和最大熵:理论和实验

与电导对数的平均值和方差相关的单参数缩放假设是电子传输理论的基础。我们使用最大熵ansatz探索粒子的对数或能量密度lnw ^X 深处 X进入一个随机的一维系统。单参数缩放将是其中的特殊情况X=大号(系统长度)。我们发现,在微波测量和计算机模拟中得到的结果是,lnw ^X 独立于 大号 等于 -X/, 和 平均自由路径。在示例的开头,变种[lnw ^X] 与线性上升 X 并且也独立于 大号,次线性增加,然后在样本输出附近下降。在X=大号 我们发现对的值进行了更正 变种[lnŤ] 通过单参数缩放预测。
更新日期:2017-11-16
down
wechat
bug