当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inverse design of grafted nanoparticles for targeted self-assembly
Molecular Systems Design & Engineering ( IF 3.6 ) Pub Date : 2017-11-15 00:00:00 , DOI: 10.1039/c7me00081b
Huikuan Chao 1, 2, 3, 4 , Robert A. Riggleman 1, 2, 3, 4
Affiliation  

Two dimensional nanoparticle lattices can exhibit unique optical, electrical, and chemical properties giving rise to emerging applications for photovoltaic conversion, electronics and optical devices. In many applications, it is useful to be able to control the particle spacing, the crystal lattice formed, and the local composition of the lattice by co-locating nanoparticles of varying chemistry. However, control over all of these variables requires exquisite control over the interparticle interactions, and a large number of degrees of freedom affect the interactions. Achieving a particular structure by design requires solving the inverse-design problem, where one must optimize the chemistry to meet the structure or property that is desired. In recent years, a variety of examples have shown that one can finely control the interactions between nanoparticles through the use of polymers grafted onto the nanoparticle surface and by controlling the grafting density and the distribution of molecular weights on the nanoparticle surface. In this work, we take the first steps on solving the inverse design problem using an approach that explicitly accounts for the chemistry on the surfaces of the particles. Using two-dimensional hybrid particle/field theory calculations and an evolutionary design strategy, we design polymer grafted nanoparticles that self-assemble into targeted square, honeycomb, and kagome lattices. We optimize both the length and grafting density of the polymers grafted to the nanoparticles, and we show that our design strategies are stable over a range of nanoparticle concentrations. Finally, we show that three-body interactions are critical for stabilizing targeted structures.

中文翻译:

用于目标自组装的接枝纳米粒子的逆向设计

二维纳米粒子晶格可以表现出独特的光学,电学和化学性质,从而引起了光伏转换,电子和光学设备的新兴应用。在许多应用中,能够通过使化学性质不同的纳米粒子共存来控制粒子间距,形成的晶格和晶格的局部组成是有用的。但是,对所有这些变量的控制都需要对粒子间相互作用的精确控制,并且大量的自由度会影响相互作用。通过设计实现特定的结构需要解决逆设计问题,其中必须优化化学反应以满足所需的结构或性能。最近几年,各种实例表明,可以通过使用接枝到纳米颗粒表面上的聚合物并通过控制接枝密度和纳米颗粒表面上分子量的分布来精细地控制纳米颗粒之间的相互作用。在这项工作中,我们采取了解决逆设计问题的第一步,即使用一种明确考虑颗粒表面化学性质的方法。使用二维混合粒子/场理论计算和进化设计策略,我们设计了自组装成目标正方形,蜂窝状和kagome晶格的聚合物接枝纳米颗粒。我们优化了接枝到纳米粒子的聚合物的长度和接枝密度,并且我们证明了我们的设计策略在一定范围的纳米粒子浓度下是稳定的。
更新日期:2017-11-15
down
wechat
bug