当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Copper-Alumina Nanocomposite Coating on Copper Substrate through Solution Combustion
Ceramics International ( IF 5.1 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.ceramint.2017.11.094
E. Mohammadi , H. Nasiri , J. Vahdati Khaki , S.M. Zebarjad

Abstract The main objective of the present research is to investigate the production of Cu-Al2O3 nanocomposite coating on a copper substrate using solution combustion synthesis. Solution combustion synthesis is mainly used to produce nanocomposite powders; however, in this study it is applied to produce nanocomposite coat. For this purpose, both copper and aluminum nitrates (Cu (NO3)2·3H2O and Al (NO3)3·9H2O) are used as oxidizers. Also, urea and graphite are respectively used as fuel to synthesize the Cu-Al2O3 nanocomposite and as inhibitor to prevent the oxidation of the synthesized copper. The microstructure and morphology of the nanocomposite coating, which includes 25 wt% alumina as the reinforcing phase, was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy at different fuel/oxidizer ratios ranging from 0.9 to 2. The temperature variation during the process was measured as a function of time using a precise thermocouple. Finally, micro-hardness and wear tests were conducted on the nanocomposite coating. The results verified the formation of Cu-Al2O3 nanocomposite coating. Time-temperature curve illustrated that the highest temperature was achieved at the fuel/oxidizer ratio of 1.25. The results of the microhardness and wear resistance test showed that these properties depend heavily on the fuel/oxidizer ratio, with the best condition attained at the ratio of 1.25.

中文翻译:

通过溶液燃烧在铜基体上涂覆铜-氧化铝纳米复合材料

摘要 本研究的主要目的是研究使用溶液燃烧合成法在铜基体上制备 Cu-Al2O3 纳米复合涂层。溶液燃烧合成主要用于生产纳米复合粉体;然而,在这项研究中,它被用于生产纳米复合涂层。为此,使用硝酸铜和硝酸铝(Cu (NO3)2·3H2O 和 Al (NO3)3·9H2O)作为氧化剂。此外,尿素和石墨分别用作合成Cu-Al2O3纳米复合材料的燃料和防止合成铜氧化的抑制剂。使用 X 射线衍射、扫描电子显微镜、研究了包含 25 wt% 氧化铝作为增强相的纳米复合涂层的微观结构和形貌。在 0.9 到 2 的不同燃料/氧化剂比率下使用透射电子显微镜。使用精确的热电偶测量该过程中的温度变化作为时间的函数。最后,对纳米复合涂层进行了显微硬度和磨损测试。结果验证了Cu-Al2O3纳米复合涂层的形成。时间-温度曲线表明,在燃料/氧化剂比为 1.25 时达到最高温度。显微硬度和耐磨性测试结果表明,这些性能在很大程度上取决于燃料/氧化剂的比例,在 1.25 的比例下获得最佳条件。对纳米复合涂层进行了显微硬度和磨损试验。结果验证了Cu-Al2O3纳米复合涂层的形成。时间-温度曲线表明,在燃料/氧化剂比为 1.25 时达到最高温度。显微硬度和耐磨性测试结果表明,这些性能在很大程度上取决于燃料/氧化剂的比例,在 1.25 的比例下获得最佳条件。对纳米复合涂层进行了显微硬度和磨损试验。结果验证了Cu-Al2O3纳米复合涂层的形成。时间-温度曲线表明,在燃料/氧化剂比为 1.25 时达到最高温度。显微硬度和耐磨性测试结果表明,这些性能在很大程度上取决于燃料/氧化剂的比例,在 1.25 的比例下获得最佳条件。
更新日期:2018-02-01
down
wechat
bug