当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors
Chemical Society Reviews ( IF 40.182 ) Pub Date : 2017-11-13 , DOI: 10.1039/C7CS00631D
Cesar Parra-Cabrera, Clement Achille, Simon Kuhn, Rob Ameloot

Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.
更新日期:2018-01-02

 

分享到
评论: 0
期刊列表
上海交通大学化学化工学院陈刚课题组招聘启事
南方科技大学招聘电子信息材料与器件方向博士后和研究助理教授
【问答】请问在THF、氢氧化钠的条件下,图中自由基中间体能否继续裂解?
2017年中科院JCR分区化学大类列表
试剂库存管理
化合物查询
down
wechat
bug