当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Size-controlled synthesis of Au nanorings on Pd ultrathin nanoplates as efficient catalysts for hydrogenation
CrystEngComm ( IF 2.6 ) Pub Date : 2017-09-29 00:00:00 , DOI: 10.1039/c7ce01350g
Yu Han 1, 2, 3, 4, 5 , Wenxing Wang 1, 2, 3, 4, 5 , Penglin Jiang 1, 2, 3, 4, 5 , Yucong Yan 1, 2, 3, 4, 5 , Hui Zhang 1, 2, 3, 4, 5 , Deren Yang 1, 2, 3, 4, 5
Affiliation  

Au nanorings are of particular interest in catalysis owing to their fascinating properties, however, it still remains a tremendous challenge to generate such hollow nanostructures with small size. Here, we report the synthesis of Au nanorings with an outer diameter of less than 20 nm by a seed-mediated approach with Pd nanoplates as seeds in the presence of Ag+ ions. The incorporation of Ag+ ions substantially slows down the reduction rate of the Au precursor through an underpotential deposition (UPD) process, leading to the formation of small Au nanoparticles. These small Au nanoparticles then coalesced into nanorings on small Pd nanoplates. The outer diameter of the Au nanorings is tuned by varying the size of the Pd nanoplates. The smallest Au nanorings are evaluated as catalysts towards the hydrogenation of 4-nitrophenol, showing substantially enhanced catalytic activity relative to the Au nanoparticles with the same size. This enhancement in the catalytic activity can be attributed to the unique structural features including the large specific surface areas, convenient accessibility of both interior and exterior surfaces for the reactants, and existence of highly active sites in the interior part.

中文翻译:

在钯超薄纳米板上尺寸控制的金纳米环的合成作为氢化的有效催化剂

金纳米环由于其引人入胜的性能而在催化方面特别受关注,但是,要产生这种小尺寸的中空纳米结构仍然是巨大的挑战。在这里,我们报告了在Ag +离子存在下,通过以Pd纳米板为种子的种子介导的方法,合成了外径小于20 nm的Au纳米环。Ag +的掺入离子通过欠电位沉积(UPD)工艺实质上减慢了Au前驱体的还原速率,从而导致了小的Au纳米颗粒的形成。然后,这些小的Au纳米颗粒在小的Pd纳米板上聚集成纳米环。通过改变钯纳米板的尺寸来调整金纳米环的外径。评估了最小的Au纳米环作为4-硝基苯酚氢化的催化剂,相对于具有相同尺寸的Au纳米颗粒,其催化活性显着提高。催化活性的这种增强可归因于独特的结构特征,包括大的比表面积,反应物的内外表面均可方便进入以及内部存在高活性位点。
更新日期:2017-11-13
down
wechat
bug