当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Slug bubbling in flat sheet MBRs: Hydrodynamic optimization of membrane design variables through computational and experimental studies
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.memsci.2017.11.024
Bing Wang , Kaisong Zhang , Robert W. Field

Abstract Slug bubbling in flat sheet MBRs (FSMBR) is of interest in water treatment industry to effectively control fouling. In this work, a novel bubbling method is used to produce slug bubbles into all channels between every pair of membranes for a large-scale 100-sheets commercial FSMBR. Below the membrane plates, coalescent bubbles formed and these developed into large-sized bubbles, which eventually distributed between channels as a set of slug bubbles. Computational Fluid Dynamics (CFD) was used to predict the bubble size and distribution among different channels, and associated hydrodynamic features. Substantial agreement was observed with the experiment results. The configuration of membrane plate centrally located above the aeration nozzles was determined to have superior hydrodynamic performance of high shear stress on the membrane surfaces. The effect of membrane plate and channel dimensions were studied to identify the optimized design for hydrodynamics enhancement on fouling control. The combination of membrane thickness at 5 mm and channel gap at 6 mm was verified to be the optimal configuration, which would give uniform distribution of slug bubbles and provide high shear stress in the channels. The optimized air flow rate was successfully reduced to 4.7 L/min m2, which corresponds to a 53% reduction compared with traditional usage (10 L/min m2) in industry.

中文翻译:

平板 MBR 中的段塞鼓泡:通过计算和实验研究对膜设计变量进行流体动力学优化

摘要 平板 MBR (FSMBR) 中的段塞鼓泡是水处理行业有效控制结垢的重要方法。在这项工作中,一种新的鼓泡方法用于在每对膜之间的所有通道中产生段状气泡,用于大规模的 100 页商业 FSMBR。在膜板下方,形成了聚结气泡,这些气泡发展成大气泡,最终以一组段塞气泡的形式分布在通道之间。计算流体动力学 (CFD) 用于预测不同通道之间的气泡大小和分布,以及相关的流体动力学特征。观察到与实验结果基本一致。位于曝气喷嘴上方的膜板配置被确定具有优异的膜表面高剪切应力的流体动力学性能。研究了膜板和通道尺寸的影响,以确定流体动力学增强对污垢控制的优化设计。膜厚为 5 mm 和通道间隙为 6 mm 的组合被证实是最佳配置,这将使段塞气泡均匀分布并在通道中提供高剪切应力。优化后的空气流速成功降低至 4.7 L/min m2,与工业中的传统使用量 (10 L/min m2) 相比减少了 53%。研究了膜板和通道尺寸的影响,以确定流体动力学增强对污垢控制的优化设计。膜厚为 5 mm 和通道间隙为 6 mm 的组合被证实是最佳配置,这将使段塞气泡均匀分布并在通道中提供高剪切应力。优化后的空气流速成功降低至 4.7 L/min m2,与工业中的传统使用量 (10 L/min m2) 相比减少了 53%。研究了膜板和通道尺寸的影响,以确定流体动力学增强对污垢控制的优化设计。膜厚为 5 mm 和通道间隙为 6 mm 的组合被证实是最佳配置,这将使段塞气泡均匀分布并在通道中提供高剪切应力。优化后的空气流速成功降低至 4.7 L/min m2,与工业中的传统使用量 (10 L/min m2) 相比减少了 53%。
更新日期:2018-02-01
down
wechat
bug