当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Applicability evaluation of advanced processes for elimination of neurophysiological activity of antidepressant fluoxetine
Chemosphere ( IF 8.1 ) Pub Date : 2017-11-11 , DOI: 10.1016/j.chemosphere.2017.11.047
László Szabó , Viktória Mile , Dóra J. Kiss , Krisztina Kovács , Tamás Földes , Tamás Németh , Tünde Tóth , Renáta Homlok , György T. Balogh , Erzsébet Takács , László Wojnárovits

Presence of the antidepressant fluoxetine in different water bodies has raised significant concerns due to its detrimental effects on non-targeted organisms, especially on fish. When seeking for an appropriate technology able to remove fluoxetine residue from a complex water matrix, special attention needs to be paid to the elimination of the neurophysiological activity that eventually lies behind the noxious effects of the parent compound. Our aim was to probe the applicability of advanced oxidation techniques for this purpose using in situ generated free radical system based on

OH-initiated peroxyl radical-mediated processes. By performing product analysis experiments along with quantum chemical calculations, the most probable reaction paths were analyzed including aromatic hydroxylation, defluorination, O-dealkylation and C-dealkylation. The candidates for neurophysiological activity were further investigated by molecular docking. The hydroxylated derivatives are well accommodated in the binding pocket of the corresponding protein, suggesting that these compounds may retain the activity of the parent compound. From a worst-case perspective, we suggest that prolonged treatment needs to be applied to further transform hydroxylated derivatives.


中文翻译:

消除抗抑郁药氟西汀神经生理活性的先进方法的适用性评估

抗抑郁药氟西汀在不同水域中的存在引起了人们的极大关注,因为它对非目标生物,特别是对鱼类的有害作用。当寻求能够从复杂的水基质中去除氟西汀残留物的适当技术时,需要特别注意消除最终导致母体化合物有害作用的神经生理活性。我们的目的是使用基于下列条件的原位生成的自由基系统,探索用于此目的的先进氧化技术的适用性:

OH引发的过氧自由基介导的过程。通过进行产物分析实验以及量子化学计算,分析了最可能的反应路径,包括芳族羟基化,脱氟,O-脱烷基和C-脱烷基。通过分子对接进一步研究神经生理活性的候选对象。羟基化的衍生物很好地容纳在相应蛋白质的结合口袋中,表明这些化合物可以保留母体化合物的活性。从最坏的情况来看,我们建议需要长期治疗以进一步转化羟基化衍生物。
更新日期:2017-11-11
down
wechat
bug