当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Verifying the Rechargeability of Li‐CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene
Advanced Science ( IF 14.3 ) Pub Date : 2017-11-10 , DOI: 10.1002/advs.201700567
Zhang Zhang 1 , Xin-Gai Wang 2 , Xu Zhang 2 , Zhaojun Xie 2 , Ya-Nan Chen 2 , Lipo Ma 3 , Zhangquan Peng 3 , Zhen Zhou 2
Affiliation  

Li‐CO2 batteries could skillfully combine the reduction of “greenhouse effect” with energy storage systems. However, Li‐CO2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N‐doped graphene (Ni‐NG) with 3D porous structure, exhibits a superior discharge capacity of 17 625 mA h g−1, as the air cathode for Li‐CO2 batteries. The batteries with these highly efficient cathodes could sustain 100 cycles at a cutoff capacity of 1000 mA h g−1 with low overpotentials at the current density of 100 mA g−1. Particularly, the Ni‐NG cathodes allow to observe the appearance/disappearance of agglomerated Li2CO3 particles and carbon thin films directly upon discharge/charge processes. In addition, the recycle of CO2 is detected through in situ differential electrochemical mass spectrometry. This is a critical step to verify the electrochemical rechargeability of Li‐CO2 batteries. Also, first‐principles computations further prove that Ni nanoparticles are active sites for the reaction of Li and CO2, which could guide to design more advantageous catalysts for rechargeable Li‐CO2 batteries.

中文翻译:


验证在氮掺杂石墨烯上高度分散的镍纳米粒子工作阴极上的锂二氧化碳电池的可充电性



Li-CO 2电池可以巧妙地将减少“温室效应”与储能系统结合起来。然而,Li-CO 2电池的电化学性能仍不令人满意,其可充电性也受到挑战。据报道,高度分散在氮掺杂石墨烯(Ni-NG)上的具有3D多孔结构的Ni纳米粒子复合材料,作为Li-CO 2的空气阴极,表现出17 625 mA hg -1的优异放电容量。电池。具有这些高效阴极的电池可以在1000 mA hg -1的截止容量下维持100个循环,并且在100 mA g -1的电流密度下具有低过电势。特别是,Ni-NG 阴极允许在放电/充电过程中直接观察团聚的 Li 2 CO 3颗粒和碳薄膜的出现/消失。此外,通过原位微分电化学质谱法检测CO 2的循环。这是验证Li-CO 2电池电化学可充电性的关键步骤。此外,第一性原理计算进一步证明Ni纳米粒子是Li和CO 2反应的活性位点,这可以指导设计更有利的可充电Li-CO 2电池催化剂。
更新日期:2017-11-10
down
wechat
bug