当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of the Surface Charge of Monodisperse Particulate Foulants on Cake Formation
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.memsci.2017.11.017
Qi Han , Weiyi Li , Thien An Trinh , Anthony G. Fane , Jia Wei Chew

Abstract In microfiltration and ultrafiltration, particulate foulants are inevitably deposited on the membrane surface, forming a cake whose structure and behaviour play crucial roles in the subsequent filterability of the suspensions. This study investigated the impact of fouling by three types of latex particulate foulants, which were of the same size (3 µm) but with different surface charges. Surprisingly, although the positively charged aminated latex was expected to perform the worst in the flux-decline experiments due to attractive electrostatic interaction with the negatively charged membrane, this latex displayed the best performance relative to the two negatively charged latex. To understand these counter-intuitive results, a novel network model (Han et al., 2017) [1] and three-dimensional (3D) optical coherence tomography (OCT) image analysis (Li et al., 2016) [2] were employed to reveal the underlying reasons for the different fouling behaviors. Two mechanisms were found to contribute to the worse performance of the negatively charged latex. Firstly, these particles tended to deposit on the pore rather than non-pore region of the membrane due to the repulsive particle-membrane electrostatic interactions, which led to a more complete pore blockage and thereby greater initial cake resistance. Secondly, these particles had a greater tendency to cluster and deposit on other deposited latex due to similarly repulsive particle-membrane and particle-particle interactions, which led to a more inhomogeneous cake and thereby greater specific cake resistance.

中文翻译:

单分散颗粒污染物的表面电荷对滤饼形成的影响

摘要 在微滤和超滤中,颗粒污染物不可避免地沉积在膜表面,形成滤饼,滤饼的结构和行为对悬浮液的后续过滤性起着至关重要的作用。本研究调查了三种类型的乳胶颗粒污染物对结垢的影响,这些污染物具有相同的尺寸 (3 µm),但具有不同的表面电荷。令人惊讶的是,尽管由于与带负电荷的膜的吸引力静电相互作用,预计带正电荷的胺化乳胶在通量下降实验中表现最差,但与两种带负电荷的乳胶相比,这种乳胶表现出最好的性能。为了理解这些反直觉的结果,一个新的网络模型(Han 等人,2017) [1] 和三维 (3D) 光学相干断层扫描 (OCT) 图像分析 (Li et al., 2016) [2] 被用来揭示不同污垢行为的根本原因。发现两种机制导致带负电荷的胶乳的性能变差。首先,由于排斥性粒子-膜静电相互作用,这些粒子倾向于沉积在膜的孔而不是非孔区域,这导致更完全的孔堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。2016) [2] 被用来揭示不同污染行为的根本原因。发现两种机制导致带负电荷的胶乳的性能变差。首先,由于排斥性粒子-膜静电相互作用,这些粒子倾向于沉积在膜的孔而不是非孔区域,这导致更完全的孔堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。2016) [2] 被用来揭示不同污染行为的根本原因。发现两种机制导致带负电荷的胶乳的性能变差。首先,由于排斥性粒子-膜静电相互作用,这些粒子倾向于沉积在膜的孔而不是非孔区域,这导致更完全的孔堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。发现两种机制导致带负电荷的胶乳的性能变差。首先,由于排斥性粒子-膜静电相互作用,这些粒子倾向于沉积在膜的孔而不是非孔区域,这导致更完全的孔堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。发现两种机制导致带负电荷的胶乳的性能变差。首先,由于排斥性粒子-膜静电相互作用,这些粒子倾向于沉积在膜的孔而不是非孔区域,这导致更完全的孔堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。这导致更完全的孔隙堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。这导致更完全的孔隙堵塞,从而更大的初始滤饼阻力。其次,由于类似排斥的颗粒-膜和颗粒-颗粒相互作用,这些颗粒更倾向于聚集和沉积在其他沉积的胶乳上,这导致更不均匀的滤饼,从而导致更大的比滤饼电阻。
更新日期:2018-02-01
down
wechat
bug