当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life
Nano Energy ( IF 16.8 ) Pub Date : 2017-11-07 , DOI: 10.1016/j.nanoen.2017.11.013
Jianli Zhang , Yan Li , Yue Zhang , Xingyue Qian , Richao Niu , Rudan Hu , Xufei Zhu , Xin Wang , Junwu Zhu

Weak adhesion between anodic TiO2 nanotube arrays (TNTAs) and Ti substrate is a nonnegligible obstacle for the preparation of long TNTAs and greatly limits its practical application. The TiNxOy nanoarrays prepared from TNTAs by a high-temperature nitridation process also suffer this defect. In this work, a compact layer (~ 140 nm in thickness) was introduced into the bottom of TNTAs via an additional anodization, resulting in firm binding between the Ti substrate and TNTAs. Owing to the strong adhesion, overlong TiNxOy nanoarrays up to 29.8 µm without curling can be obtained. Notably, the TiNxOy nanoarrays with average lengths of ~ 22.8 µm depict an extraordinary specific capacitance of 550.8 mF cm−2 at 0.5 mA cm−2 in 1.0 M H2SO4, which is the highest value of TiNxOy nanoarrays as reported so far. Moreover, TiNxOy/MnO2, TiNxOy/Co-S and TiNxOy/MoS2 nanoarrays were obtained. The loaded thin MnO2 layer presents a superior specific capacitance of 1404.4 F g−1 at 0.5 A g−1 (95.5 mF cm−2 at 0.5 mF cm−2). Flexible symmetric supercapacitor constructed by TiNxOy/MnO2 nanoarrays can offer energy and power densities of 1.24 μWh cm−2 and 9.14 mW cm−2 at 30 mA cm−2, respectively. Remarkably, the assembled TiNxOy/MnO2 flexible supercapacitor achieves excellent cyclic stability with a retention of 93.88% over 10000 cycles. The obtained TiNxOy/Co-S nanoarrays can offer a specific capacitance of 358 mF cm−2 at 0.5 mA cm−2.



中文翻译:

超长TiN x O y / MnO 2纳米阵列与Ti衬底之间的附着力增强:向具有高能量密度和长使用寿命的柔性超级电容器迈进

阳极TiO 2纳米管阵列(TNTA)与Ti基体之间的弱附着力是制备长TNTA的不可忽视的障碍,并极大地限制了其实际应用。由TNTA通过高温氮化工艺制备的TiN x O y纳米阵列也存在该缺陷。在这项工作中,通过额外的阳极氧化将致密层(厚度约140 nm)引入TNTA的底部,从而在Ti衬底和TNTA之间形成牢固的结合。由于具有很强的附着力,可以获得长达29.8 µm的不卷曲的超长TiN x O y纳米阵列。值得注意的是,TiN x O y平均长度约为22.8 µm的纳米阵列在1.0 MH 2 SO 4中在0.5 mA cm -2时具有550.8 mF cm -2的非凡比电容,这是迄今为止报道的TiN x O y纳米阵列的最高值。此外,获得了TiN x O y / MnO 2,TiN x O y / Co-S和TiN x O y / MoS 2纳米阵列。所装载的薄的MnO 2层礼物1404.4 F G优异的比电容-1在0.5 A克-1(95.5厘米mF及其-2 0.5μF的厘米-2)。由TiN x O y / MnO 2纳米阵列构成的柔性对称超级电容器在30 mA cm -2时可分别提供1.24μWhcm -2和9.14 mW cm -2的能量和功率密度。值得注意的是,组装好的TiN x O y / MnO 2柔性超级电容器具有出色的循环稳定性,在10000次循环中的保留率为93.88%。所获得的TiN x O y / Co-S纳米阵列可以在0.5 mA cm -2的条件下提供358 mF cm -2的比电容。

更新日期:2017-11-07
down
wechat
bug