当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2017-09-18 00:00:00 , DOI: 10.1039/c7ee02138k
Kyu-Young Park 1, 2, 3, 4, 5 , Jihyun Hong 6, 7, 8, 9 , Won-Mo Seong 1, 2, 3, 4, 5 , Jung-Joon Kim 1, 2, 3, 4, 5 , Kyojin Ku 1, 2, 3, 4, 5 , Byungju Lee 1, 2, 3, 4, 5 , Kisuk Kang 1, 2, 3, 4, 5
Affiliation  

An in-depth understanding of electrode reactions is essential to achieve a breakthrough in lithium-ion battery technology, the new ‘engine’ for electric vehicles. Recent studies have continued to reveal unexpected electrode behaviors, providing a more refined view of the operating mechanisms of electrodes from the atomistic to particle level and offering new perspectives to design better battery systems. Herein, it is observed for the first time that the history of applied current densities is memorized in electrode materials that operate via a two-phase reaction and systematically induces a transient galvanostatic profile variation of the electrode. These unforeseen profile changes can be explained by a new proposed intercalation model in which active particle sub-groupings are intermittently generated with a non-uniform chemical potential distribution at the end of charge or discharge. The types of active particle groupings are determined by the current density of the prior charge or discharge, resulting in distinct signatures in the electrochemical profile in the subsequent galvanostatic process. Our proposed intercalation model affords a more comprehensive view of the behavior of electrodes containing many-body particles by elucidating the effect of the applied current densities.

中文翻译:

锂离子电池相分离电极中可追踪的恒电流历史:镶嵌子分组嵌入模型

深入了解电极反应对于突破锂离子电池技术(电动汽车的新“引擎”)至关重要。最近的研究继续揭示出意想不到的电极行为,提供了从原子级到颗粒级的电极操作机理的更精细视图,并为设计更好的电池系统提供了新的视角。在此,首次观察到施加电流密度的历史存储在通过两相反应并系统性地引起电极的瞬变恒电流轮廓变化。这些无法预料的轮廓变化可以通过新提出的插层模型来解释,在该模型中,在充电或放电结束时间歇性地生成具有不均匀化学势分布的活性粒子子组。活性粒子分组的类型取决于先前充电或放电的电流密度,从而在随后的恒电流过程中导致电化学分布中的明显特征。通过阐明施加电流密度的影响,我们提出的插入模型可以更全面地了解包含多体粒子的电极的行为。
更新日期:2017-11-08
down
wechat
bug