当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
TiO2-Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries
The Journal of Physical Chemistry B ( IF 3.3 ) Pub Date : 2017-11-07 00:00:00 , DOI: 10.1021/acs.jpcb.7b07130
Sergio Pinilla 1 , Abniel Machín 2 , Sang-Hoon Park 3 , Juan C. Arango 2 , Valeria Nicolosi 3 , Francisco Márquez -Linares 2 , Carmen Morant 1
Affiliation  

The photocatalytic activity of different titanium oxide nanowires containing gold (Au@TiO2NWs), and gold-graphene (Au@TiO2NWs-graphene), was evaluated by studying the reaction of hydrogen production by water splitting under UV–vis light. The composites showed high surface areas, with values above 300 m2 per gram, even after the incorporation of gold and graphene on the surface of titanium oxide nanowires. The highest hydrogen production of Au@TiO2NWs was 1436 μmol h–1 g–1, under irradiation at 400 nm, and with a gold loading of 10 wt %. This photocatalytic activity was 11.5 times greater than that shown by the unmodified TiO2NWs. For the Au@TiO2NWs-graphene composites, the highest hydrogen amount obtained was 1689 μmol h–1 g–1, at loadings of 10 and 1 wt % of gold and graphene, respectively. The photocatalytic activity of the gold-graphene compounds was 1.2 times greater than that shown by the titanium oxide catalysts and 13.5 times higher than the bare TiO2NWs. Even at wavelengths greater than 500 nm, the compounds exhibited yields of hydrogen above 1000 μmol h–1 g–1, demonstrating the high catalytic activity of the compounds. In addition, TiO2-based materials are of great interest for energy storage and conversion devices, in particular for rechargeable lithium ion batteries. TiO2 has a significant advantage due to its low volume change (<4%) during the Li ion insertion/desertion process, short paths for fast lithium ion diffusion, and large exposed surface, offering more lithium insertion channels. However, the relatively low theoretical capacity and electrical conductivity of TiO2 greatly hamper its practical application. In this work, free-standing electrodes composed by TiO2NWs and carbon nanotubes, CNT@TiO2NWs, were used as anode materials for Li-ion batteries. As a result, the electronic conductivity and mechanical properties of the composite were greatly improved and a good cycling performance was obtained in these batteries. This research shows the potential of TiO2-based materials for the development of new catalysts for hydrogen production and energy storage systems.

中文翻译:

TiO 2基纳米材料用于制氢和锂离子电池的开发

通过研究在紫外可见光下水分解产生的氢的反应,评估了不同的含金(Au @ TiO 2 NWs)和金-石墨烯(Au @ TiO 2 NWs-石墨烯)的氧化钛纳米线的光催化活性。即使在氧化钛纳米线的表面上掺入了金和石墨烯之后,该复合材料仍具有较高的表面积,其值超过每克300 m 2。在400 nm的辐射下,金负载量为10 wt%时,Au @ TiO 2 NW的最高产氢量为1436μmolh –1 g –1。该光催化活性是未改性的TiO 2 NW所显示的光催化活性的11.5倍。对于Au @ TiO2种NWs-石墨烯复合材料,在金和石墨烯的负载量分别为10和1 wt%时,获得的最高氢量为1689μmolh –1 g –1。金-石墨烯化合物的光催化活性比二氧化钛催化剂高1.2倍,比裸露的TiO 2 NW高13.5倍。即使在大于500 nm的波长下,这些化合物也显示出超过1000μmolh –1 g –1的氢产率,这表明这些化合物具有很高的催化活性。另外,基于TiO 2的材料对于能量存储和转换装置,特别是对于可再充电锂离子电池特别重要。二氧化钛2由于锂离子插入/脱除过程中的体积变化小(<4%),锂离子快速扩散的短路径以及较大的暴露表面,从而提供了更多的锂插入通道,因此具有显着的优势。但是,TiO 2的相对较低的理论容量和电导率极大地妨碍了其实际应用。在这项工作中,由TiO 2 NW和碳纳米管组成的自支撑电极CNT @ TiO 2 NW被用作锂离子电池的负极材料。结果,极大地改善了复合材料的电子导电性和机械性能,并且在这些电池中获得了良好的循环性能。这项研究表明了TiO 2的潜力基材料,用于开发用于氢气生产和能量存储系统的新型催化剂。
更新日期:2017-11-08
down
wechat
bug