当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4
Advanced Science ( IF 14.3 ) Pub Date : 2017-11-08 , DOI: 10.1002/advs.201700345
Jianjiang Li 1, 2 , Shuai Chen 3 , Xiaoyi Zhu 1 , Xilin She 1 , Tongchao Liu 4 , Huawei Zhang 5 , Sridhar Komarneni 6 , Dongjiang Yang 1, 7 , Xiangdong Yao 7
Affiliation  

A biomass‐templated pathway is developed for scalable synthesis of NiCo2O4@carbon aerogel electrodes for supercapacitors, where NiCo2O4 hollow nanoparticles with an average outer diameter of 30–40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo2O4 aerogel structure shows large specific surface area (167.8 m2 g−1), high specific capacitance (903.2 F g−1 at a current density of 1 A g−1), outstanding rate performance (96.2% capacity retention from 1 to 10 A g−1), and excellent cycling stability (nearly without capacitance loss after 3000 cycles at 10 A g−1). The unique structure of the 3D hollow aerogel synergistically contributes to the high performance. For instance, the 3D interconnected porous structure of the aerogel is beneficial for electrolyte ion diffusion and for shortening the electron transport pathways, and thus can improve the rate performance. The conductive carbon joint greatly enhances the specific capacity, and the hollow structure prohibits the volume changes during the charge–discharge process to significantly improve the cycling stability. This work represents a giant step toward the preparation of high‐performance commercial supercapacitors.

中文翻译:

通过 NiCo2O4 工程空心纳米颗粒实现超级电容器中具有卓越倍率性能的气凝胶电极

开发了一种生物质模板途径,用于超级电容器用 NiCo 2 O 4 @碳气凝胶电极的可扩展合成,其中平均外径为 30-40 nm 的 NiCo 2 O 4中空纳米粒子与石墨碳结合形成 3D 气凝胶结构。这种NiCo 2 O 4气凝胶结构表现出较大的比表面积(167.8 m 2 g -1)、高比电容( 1 A g -1电流密度下为903.2 F g -1)、优异的倍率性能(96.2%) 1至10 A g -1的容量保持率)和出色的循环稳定性(10 A g -1循环3000次后几乎没有电容损失)。3D中空气凝胶的独特结构协同有助于实现高性能。例如,气凝胶的3D互连多孔结构有利于电解质离子扩散和缩短电子传输路径,从而可以提高倍率性能。导电碳接头大大提高了比容量,中空结构抑制了充放电过程中的体积变化,显着提高了循环稳定性。这项工作代表着向高性能商用超级电容器的制备迈出了一大步。
更新日期:2017-11-08
down
wechat
bug