当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flexible Modulation of Electronic Band Structures of Wide Band Gap GaN Semiconductors Using Bioinspired, Nonbiological Helical Peptides
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2017-11-02 , DOI: 10.1002/adfm.201704034
Sven Mehlhose 1, 2 , Nataliya Frenkel 1, 2 , Hirotaka Uji 2 , Sara Hölzel 3 , Gesche Müntze 3 , Daniel Stock 3 , Silvio Neugebauer 4 , Armin Dadgar 4 , Wasim Abuillan 1 , Martin Eickhoff 3, 5 , Shunsaku Kimura 2 , Motomu Tanaka 1, 6
Affiliation  

Modulation of the electronic band profiles of wide band gap GaN semiconductors is achieved by the macromolecular dipole potentials exerted from ordered monolayers of synthetic, nonbiological aldehyde terminated helical peptides deposited on wet chemically oxidized GaN surfaces functionalized with aminosilanes. The selective coupling of either N‐ or C‐terminal to the amino‐terminated surface enables one to control the direction of the dipole moment, while the number of amino acids determines its magnitude. After confirming the formation of highly ordered peptide monolayers, the impact of macromolecular dipole potentials is quantified by electrochemical impedance spectroscopy. Moreover, the chronoamperometry measurements of ferrocene‐terminated peptides suggest that the transfer of electrons injected from ferrocene follows inelastic hopping, while the current responses of peptides with no ferrocene moieties are purely capacitive. Finally, the same functionalization steps are transferred to GaN/AlGaN/GaN high electron mobility transistor structures. Stable and quantitative modulation of the current–voltage characteristics of the 2D electron gas by the deposition of bioinspired peptides is a promising strategy for the macromolecular dipole engineering of GaN semiconductors.

中文翻译:

使用生物启发的非生物螺旋肽对宽带隙GaN半导体的电子带结构进行灵活调制

宽带隙GaN半导体的电子带谱的调制是通过从合成的,非生物的,醛基封端的螺旋状肽的有序单层沉积在用氨基硅烷功能化的湿化学氧化GaN表面上施加的大分子偶极电位来实现的。N端或C端与氨基末端表面的选择性偶联使人们能够控制偶极矩的方向,而氨基酸的数量决定了偶极矩的大小。在确认了高度有序的肽单层的形成之后,通过电化学阻抗谱定量了大分子偶极电势的影响。此外,对二茂铁封端的肽进行计时安培测量表明,从二茂铁注入的电子的转移遵循非弹性跳跃,而没有二茂铁部分的肽的电流响应是纯电容性的。最后,将相同的功能化步骤转移到GaN / AlGaN / GaN高电子迁移率晶体管结构。通过生物启发肽的沉积,对二维电子气的电流-电压特性进行稳定和定量的调节,是GaN半导体大分子偶极工程学的有前途的策略。
更新日期:2017-11-02
down
wechat
bug