当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-Ligand Synergistic Modulation: A Satisfactory Strategy for Simultaneously Improving the Activity and Stability of Oxygen Evolution Electrocatalysts
ACS Catalysis ( IF 11.3 ) Pub Date : 2017-11-01 00:00:00 , DOI: 10.1021/acscatal.7b01971
Lishan Peng 1 , Jun Wang 1 , Yao Nie 1 , Kun Xiong 1 , Yao Wang 1 , Ling Zhang 1 , Ke Chen 1 , Wei Ding 1 , Li Li 1 , Zidong Wei 1
Affiliation  

The sluggish kinetics of the oxygen evolution reaction (OER) is the bottleneck of water electrolysis for hydrogen generation. Developing cost-effective OER materials with a high value of practical application is a prerequisite to achieve extreme performance in both activity and stability. Herein, we report a “dual ligand synergistic modulation” strategy to accurately tune the structure of transition-metal materials at atomic level, which finally achieves satisfactory results for the unity between robust stability and high activity. Remarkably, the elaborately designed S and OH dual-ligand NiCo2(SOH)x catalyst exhibits an excellent OER activity with a very small overpotential of 0.29 V at a current density of 10 mA cm–2 and a strong durability even after 30 h accelerated aging at a large current density of 100 mA cm–2, both of which are superior to most of the state-of-the-art OER catalysts so far. The density functional theory (DFT) calculations disclose that the synergy of OH and S ligands on the surface of NiCo2(SOH)x can delicately tune the electronic structure of metal active centers and their chemical environment, which results in optimal binding energies of the OER intermediates (*OH, *O, and *OOH) and a strengthened binding energy between metal and anion ligands, thus leading to an excellent intrinsically enhanced OER activity and stability, respectively. Meanwhile, the special nonmagnetism of NiCo2(SOH)x can significantly weaken the resistance of O2 desorption on the catalyst surface, thus facilitating the O2 evolution proceedings.

中文翻译:

双配体协同调节:同时提高氧气析出电催化剂的活性和稳定性的令人满意的策略。

放氧反应(OER)的动力学缓慢是水电解产生氢的瓶颈。开发具有高实用价值的具有成本效益的OER材料是在活性和稳定性方面都达到极致性能的前提。在本文中,我们报告了一种“双配体协同调制”策略,可在原子水平上精确调整过渡金属材料的结构,最终在稳健性和高活性之间取得了令人满意的结果。值得注意的是,精心设计的S和OH双配体NiCo 2(SOH)x催化剂具有出色的OER活性,在10 mA cm –2的电流密度下具有0.29 V的很小的过电势甚至在以100 mA cm –2的大电流密度加速老化30小时后仍具有很强的耐久性,这两种性能均优于迄今为止大多数最新的OER催化剂。密度泛函理论(DFT)计算表明,NiCo 2(SOH)x表面上的OH和S配体的协同作用可以精细地调节金属活性中心的电子结构及其化学环境,从而使金属活性中心具有最佳的结合能。 OER中间体(* OH,* O和* OOH)以及金属和阴离子配体之间增强的结合能,因此分别导致优异的内在增强的OER活性和稳定性。同时,NiCo 2(SOH)x的特殊非磁性可以显着削弱催化剂表面上O 2脱附的抵抗力,从而促进O 2析出程序。
更新日期:2017-11-02
down
wechat
bug