当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
Nature Reviews Materials ( IF 79.8 ) Pub Date : 2017-10-31 , DOI: 10.1038/natrevmats.2017.70
Cun-Zheng Ning , Letian Dou , Peidong Yang

Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II–VI and III–V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.



中文翻译:

具有广泛可调组成的半导体合金纳米材料的带隙工程

在过去的十年中,通过合金化不同的单个半导体,在具有宽禁带宽度的纳米级半导体材料的开发方面已经取得了巨大的进步。这些材料包括传统的II-VI和III-V半导体及其合金,无机和混合钙钛矿,以及新兴的2D材料。这些材料的一个重要的共同特征是,它们的纳米级尺寸导致对组成不同的整体结构内或基材与目标材料之间的晶格失配具有较大的容忍度,这使我们能够实现对合金成分变化的几乎任意控制。结果,可以对这些合金的带隙进行广泛的调整,而不会出现散装材料中通常无法避免的有害缺陷,对晶格失配的容忍度要有限得多。这类纳米材料可能对广泛的光子应用产生深远的影响,包括可调谐激光器,固态照明,人工光合作用和新的太阳能电池。

更新日期:2017-10-31
down
wechat
bug