当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Creating 20 nm thin patternable flat fire
Nano Energy ( IF 17.6 ) Pub Date : 2017-10-26 , DOI: 10.1016/j.nanoen.2017.10.054
Gang Yang , Zhimao Wu , Wei Wang , Zhaoyun Zhang , Zhiyu Hu

A 20 nm flat fire pattern was prepared by magnetron sputtering (MTS) deposition using Pt/Al2O3 nanocatalytic structure. Atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM) were used to characterize the microstructure of nanocatalystic film. Uniform temperature distributions across the nanocatalytic surface as well as rapid temperature response were observed using infrared thermal microscope under various methanol/air mixed flows. We observed as high as 15 °C over 20 nm Pt/ Al2O3 layer (vertical thermal gradient > 750 °C/μm or 750,000 °C/mm); when the vertical temperature difference is about 5 °C the horizontal thermal gradient is larger than 1.33 °C/μm (or 1330 °C/mm). In addition, the nanoscale heat transfer mechanisms were explored based on the experimental data and theoretical model. The results indicate that this kind of patterned nanoscale fire has the advantages of rapid temperature response and uniform temperature distribution, as well as larger temperature gradient. The nanoscale thin catalytic fire exhibits excellent properties of ultra-low catalyst loading and high conversion efficiency which are suitable for energy conversion at nanoscale. To develop a controllable and localized ultrathin two-dimensional fire may provide a possibility of making chip-scale power MEMS in the near future.



中文翻译:

产生20 nm薄的可图案化平面火

通过使用Pt / Al 2 O 3纳米催化结构的磁控溅射(MTS)沉积制备了20 nm的平坦火焰图案。原子力显微镜(AFM)和扫描透射电子显微镜(STEM)被用来表征纳米催化膜的微观结构。在各种甲醇/空气混合流下,使用红外热显微镜观察了整个纳米催化表面的均匀温度分布以及快速的温度响应。我们在20 nm Pt / Al 2 O 3上观察到高达15°C层(垂直热梯度> 750°C /μm或750,000°C / mm); 当垂直温差约为5°C时,水平热梯度大于1.33°C /μm(或1330°C / mm)。此外,基于实验数据和理论模型,探索了纳米级传热机理。结果表明,这种图案化的纳米火具有温度响应快,温度分布均匀,温度梯度大的优点。纳米级薄催化火表现出优异的超低催化剂负载性能和高转化效率,适用于纳米级的能量转化。开发可控且局部的超薄二维火灾可能会在不久的将来提供制造芯片级功率MEMS的可能性。

更新日期:2017-10-26
down
wechat
bug