当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization†
Molecular Systems Design & Engineering ( IF 3.6 ) Pub Date : 2017-10-24 00:00:00 , DOI: 10.1039/c7me00055c
Roberto Cao-Milán 1, 2, 3, 4 , Luke D. He 1, 2, 3, 4 , Spencer Shorkey 1, 2, 3, 4 , Gulen Y. Tonga 1, 2, 3, 4 , Li-Sheng Wang 1, 2, 3, 4 , Xianzhi Zhang 1, 2, 3, 4 , Imad Uddin 1, 5, 6, 7 , Riddha Das 1, 2, 3, 4 , Mine Sulak 8, 9, 10, 11 , Vincent M. Rotello 1, 2, 3, 4
Affiliation  

The inclusion of transition metal catalysts into nanoparticle scaffolds permits the creation of catalytic nanosystems (nanozymes) able to imitate the behaviour of natural enzymes. Here we report the fabrication of a family of nanozymes comprised of bioorthogonal ruthenium catalysts inserted in the protective monolayer of gold nanoparticles. By introducing simple modifications to the functional groups at the surface of the nanozymes, we have demonstrated control over the kinetic mechanism of our system. Cationic nanozymes with hydrophobic surface functionalities tend to replicate the classical Michaelis Menten model, while those with polar groups display substrate inhibition behaviour, a key mechanism present in 20% of natural enzymes. The structural parameters described herein can be used for creating artificial nanosystems that mimic the complexity observed in cell machinery.

中文翻译:

通过其表面功能化来调节酶样纳米颗粒的催化活性

将过渡金属催化剂包含到纳米颗粒支架中允许创建能够模仿天然酶行为的催化纳米系统(纳米酶)。在这里,我们报道了由金纳米颗粒的保护性单层插入的生物正交钌催化剂组成的纳米酶家族的制造。通过对纳米酶表面的官能团进行简单修饰,我们证明了对系统动力学机制的控制。具有疏水性表面功能的阳离子纳米酶趋向于复制经典的Michaelis Menten模型,而具有极性基团的阳离子纳米酶则表现出底物抑制行为,这是20%天然酶中存在的关键机制。
更新日期:2017-10-24
down
wechat
bug