当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Breaking the Kasha Rule for More Efficient Photochemistry
Chemical Reviews ( IF 51.4 ) Pub Date : 2017-10-09 00:00:00 , DOI: 10.1021/acs.chemrev.7b00110
Alexander P. Demchenko,Vladimir I. Tomin,Pi-Tai Chou

This paper provides a systematic review and analysis of different phenomena that violate a basic principle, Kasha’s rule, when applied to photochemical reactions. In contrast to the classical route of ultrafast transition to the lowest energy excited state and photochemical reaction starting therein, in some cases, these reactions proceed directly from high-energy excited states. Nowadays, this phenomenon can be observed for a number of major types of excited-state reactions: harvesting product via intersystem crossing; photoisomerizations; bond-breaking; and electron, proton, and energy transfers. We show that specific conditions for their observation are determined by kinetic factors. They should be among the fastest reactions in studied systems, competing with vibrational relaxation and radiative or nonradiative processes occurring in upper excited states. The anti-Kasha effects, which provide an important element that sheds light on the mechanisms of excited-state transformations, open new possibilities of selective control of these reactions for a variety of practical applications. Efficient utilization of excess electronic energy should enhance performance in the systems of artificial photosynthesis and photovoltaic devices. The modulation of the reporting signal by the energy of excitation of light should lead to new technologies in optical sensing and imaging.

中文翻译:

打破卡莎规则,提高光化学效率

本文提供了对应用于光化学反应时违反基本原理(Kasha规则)的不同现象的系统综述和分析。与经典的超快转变为最低能量激发态和从那里开始的光化学反应的路线相反,在某些情况下,这些反应直接从高能量激发态进行。如今,在许多主要的激发态反应类型中都可以观察到这种现象:通过系统间交叉收获产品;光异构化;破坏债券;以及电子,质子和能量转移。我们表明,其观察的具体条件是由动力学因素决定的。它们应该是研究系统中最快的反应之一,与振动弛豫以及在高激发态下发生的辐射或非辐射过程竞争。抗卡沙效应提供了阐明激发态转变机理的重要元素,为各种实际应用打开了选择性控制这些反应的新可能性。有效利用多余的电子能量将增强人工光合作用和光伏设备系统的性能。光激发能量对报告信号的调制将导致光学传感和成像领域的新技术。为各种实际应用开辟了选择性控制这些反应的新可能性。有效利用多余的电子能量将增强人工光合作用和光伏设备系统的性能。光激发能量对报告信号的调制将导致光学传感和成像领域的新技术。为各种实际应用开辟了选择性控制这些反应的新可能性。有效利用多余的电子能量将增强人工光合作用和光伏设备系统的性能。光激发能量对报告信号的调制将导致光学传感和成像领域的新技术。
更新日期:2017-10-09
down
wechat
bug