当前位置: X-MOL 学术ACS Cent. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cavitation-Induced Synthesis of Biogenic Molecules on Primordial Earth
ACS Central Science ( IF 12.7 ) Pub Date : 2017-09-11 00:00:00 , DOI: 10.1021/acscentsci.7b00325
Natan-Haim Kalson 1, 2 , David Furman 3, 4 , Yehuda Zeiri 1, 4
Affiliation  

Despite decades of research, how life began on Earth remains one of the most challenging scientific conundrums facing modern science. It is agreed that the first step was synthesis of organic compounds essential to obtain amino acids and their polymers. Several possible scenarios that could accomplish this step, using simple inorganic molecules, have been suggested and studied over the years. The present study examines, using atomistic reactive molecular dynamics simulations, the long-standing suggestion that natural cavitation in primordial oceans was a dominant mechanism of organic molecule synthesis. The simulations allow, for the first time, direct observation of the rich and complex sonochemistry occurring inside a collapsing bubble filled with water and dissolved gases of the early atmosphere. The simulation results suggest that dissolved CH4 is the most efficient carbon source to produce amino acids, while CO and CO2 lead to amino acid synthesis with lower yields. The efficiency of amino acid synthesis also depends on the nitrogen source used (i.e., N2, NH3) and on the presence of HCN. Moreover, cavitation may have contributed to the increase in concentration of NH3 in primordial oceans and to the production and liberation of molecular O2 into the early atmosphere. Overall, the picture that emerges from the simulations indicates that collapsing bubbles may have served as natural bioreactors in primordial oceans, producing the basic chemical ingredients required for the beginning of life.

中文翻译:

空化诱导的原始地球上生物分子的合成

尽管进行了数十年的研究,但地球生命的开始方式仍然是现代科学面临的最具挑战性的科学难题之一。公认的第一步是合成对于获得氨基酸及其聚合物必不可少的有机化合物。多年来,已经提出并研究了使用简单的无机分子可以完成此步骤的几种可能方案。本研究使用原子反应性分子动力学模拟研究了长期存在的建议,即原始海洋中的自然空化是有机分子合成的主要机制。该模拟首次允许直接观察在充满早期水和大气中溶解的气体的坍塌气泡中发生的丰富而复杂的声化学。模拟结果表明,溶解的CH4是产生氨基酸的最有效碳源,而CO和CO 2导致氨基酸合成的产率较低。氨基酸合成的效率还取决于所使用的氮源(即N 2,NH 3)和HCN的存在。此外,空化作用可能导致原始海洋中NH 3浓度的增加以及分子O 2的产生和释放到早期大气中。总体而言,从模拟中得出的图片表明,破裂的气泡可能已成为原始海洋中的天然生物反应器,产生了生命初期所需的基本化学成分。
更新日期:2017-09-11
down
wechat
bug