当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-step synthesis of novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by chemical vapor deposition
Nano Research ( IF 9.5 ) Pub Date : 2018-03-19 , DOI: 10.1007/s12274-017-1804-z
Jing Ning , Dong Wang , Jincheng Zhang , Xin Feng , Ruixia Zhong , Jiabo Chen , Jianguo Dong , Lixin Guo , Yue Hao

The recent development of synthesis processes for three-dimensional (3D) graphene-based structures has tended to focus on continuous improvement of porous nanostructures, doping modification during thin-film fabrication, and mechanisms for building 3D architectures. Here, we synthesized novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by one-step low-pressure chemical vapor deposition (CVD). Through systematic micromorphological characterization, it was determined that the formation mechanism of the nanostructures involved the melting of the Cu foam surface and the subsequent condensation of the resulting vapor, 3D growth of graphene through catalysis in the presence of Cu, and finally, nucleation of the Si-O/Si-C nanostructure in the carbon-rich atmosphere. Thus, by tuning the growth temperature and duration, it should be possible to control the nucleation and evolution of such snowflake-like nanostructures with precision. Electrochemical measurements indicated that the snowflake-like nanostructures showed excellent performance as a material for energy storage. The highest specific capacitance of the Si-O/Si-C nanostructures was ∼963.2 mF/cm2 at a scan rate of 1 mV/s. Further, even after 20,000 sequential cycles, the electrode retained 94.4% of its capacitance.

Open image in new window


中文翻译:

通过化学气相沉积法在3D石墨烯/铜泡沫上一步合成新型雪花状Si-O / Si-C纳米结构

用于基于三维(3D)石墨烯的结构的合成工艺的最新发展趋向于集中于多孔纳米结构的不断改进,薄膜制造过程中的掺杂改性以及用于构建3D体系结构的机制。在这里,我们通过一步低压化学气相沉积(CVD)在3D石墨烯/铜泡沫上合成了新颖的雪花状Si-O / Si-C纳米结构。通过系统的微观形貌表征,确定了纳米结构的形成机理涉及Cu泡沫表面的熔化和随后蒸气的冷凝,石墨烯在Cu存在下的催化3D生长,以及最终核的成核。富碳气氛中的Si-O / Si-C纳米结构。因此,通过调整生长温度和持续时间,应该有可能精确控制这种雪花状纳米结构的成核和演化。电化学测量表明,雪花状纳米结构作为储能材料表现出出色的性能。Si-O / Si-C纳米结构的最高比电容为〜963.2 mF / cm2扫描速度为1 mV / s。此外,即使在20,000个连续循环之后,电极仍保留其电容的94.4%。

在新窗口中打开图像
更新日期:2018-03-19
down
wechat
bug