当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxidoreductases on their way to industrial biotransformations
Biotechnology Advances ( IF 12.1 ) Pub Date : 2017-06-15 , DOI: 10.1016/j.biotechadv.2017.06.003
Angel T. Martínez , Francisco J. Ruiz-Dueñas , Susana Camarero , Ana Serrano , Dolores Linde , Henrik Lund , Jesper Vind , Morten Tovborg , Owik M. Herold-Majumdar , Martin Hofrichter , Christiane Liers , René Ullrich , Katrin Scheibner , Giovanni Sannia , Alessandra Piscitelli , Cinzia Pezzella , Mehmet E. Sener , Sibel Kılıç , Willem J.H. van Berkel , Victor Guallar , Maria Fátima Lucas , Ralf Zuhse , Roland Ludwig , Frank Hollmann , Elena Fernández-Fueyo , Eric Record , Craig B. Faulds , Marta Tortajada , Ib Winckelmann , Jo-Anne Rasmussen , Mirjana Gelo-Pujic , Ana Gutiérrez , José C. del Río , Jorge Rencoret , Miguel Alcalde

Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.



中文翻译:

氧化还原酶正朝着工业生物转化的方向发展

真菌会产生涉及木质素和其他难降解化合物生物降解的含血红素的过氧化物酶和过氧化酶,含黄素的氧化酶和脱氢酶,以及不同的含铜氧化还原酶。血红素过氧化物酶包括经典的木质素分解过氧化物酶和新的染料脱色过氧化物酶,而血红素过加氧酶属于血红素-硫醇盐蛋白的仍未开发的超家族。然而,担子菌非特异性过氧合酶由于其能够以H 2 O 2为氧源和最终电子受体而催化多种区域和立体选择性单加氧反应的能力而具有最高的生物技术兴趣。黄酮氧化酶参与木质素和纤维素的降解,产生H 2激活过氧化物酶并产生羟基的O 2。铜氧化还原酶的组还包括其他H 2 O 2生成酶-铜自由基氧化酶-以及经典漆酶,它们是迄今为止报道的最多应用的氧化还原酶。然而,最近描述的裂解多糖单加氧酶在铜氧化还原酶中引起了最高的关注,因为它们能够氧化分解结晶纤维素,其分解仍然是木质纤维素生物精炼厂的主要瓶颈,同时木质素降解也是如此。有趣的是,一些含黄素的脱氢酶在纤维素分解中也起着关键作用,通过直接/间接“加电”电子来激活多糖单加氧酶。已对上述许多氧化还原酶进行了工程设计,将合理的设计和计算设计与定向进化相结合,以实现选择性,其工业利用所需的催化效率和稳定性能。确实,使用借助ad hoc软件和当前的计算功能,现在可以在生物物理模拟中预测底物进入活性位点的时间,并在生物化学模拟中预测电子转移效率,从而将氧化还原酶筛选和工程实验的时间缩短了几个数量级。以上是在跨学科和多学科的欧洲RTD项目框架内开发的一系列显着的氧官能化和氧化反应所说明的。优化的反应包括1-萘酚,25-羟基维生素D 3的酶促合成,药物代谢物,呋喃二甲酸,靛蓝和其他染料以及导电性聚苯胺,烷烃的末端氧化,生物质脱木质素和木质素氧化等。这些成功的案例证明了氧化还原酶在中型和大型生物转化中的未开发潜力。

更新日期:2017-06-15
down
wechat
bug