当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology
Biotechnology Advances ( IF 16.0 ) Pub Date : 2017-08-05 , DOI: 10.1016/j.biotechadv.2017.08.001
Pavel Dvořák , Pablo I. Nikel , Jiří Damborský , Víctor de Lorenzo

Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms—specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow.



中文翻译:

生物修复30:系统生物学时代的工程污染物去除细菌

消除或减轻工业和城市活动释放到环境中的化学废物的毒性影响在很大程度上取决于微生物(尤其是细菌)的催化活性。已知其迅速发展的能力,它们具有生化功率解决大量分子从通过人的行动其地质处置库动员(É。,烃类,重金属)或通过化学合成(产生Ë,异源化合物)。尽管天然存在的微生物已经具有相当大的能力来去除许多环境污染物,而无需外部干预,但是1980年代的基因工程开始使细菌能够合理设计来分解特定化合物的可能性成为可能,这些化合物最终可以作为生物修复剂释放到环境中。 。这项工作的复杂性和缺乏基础知识,仅在十年后就导致了这种基于重组DNA的生物修复的虚拟放弃。在一系列事件中,最近几年见证了新的系统性应用的出现领域(包括系统和合成生物学以及代谢工程),这些领域可以通过全新且功能强大的方法重新审视相同的环境污染挑战。由于人为排放的温室气体和塑料废物在全球范围内的累积等严重问题,人们对污染场地和化学物质的关注扩大了。在本文中,我们分析了当代的系统生物学如何帮助将生物修复剂的设计带回到环境生物技术的核心。我们检查了分解代谢途径构建和优化的许多最新策略,并通过提出工程流程将它们组合在一起。

更新日期:2017-08-05
down
wechat
bug