当前位置: X-MOL 学术Surf. Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis
Surface Science Reports ( IF 9.8 ) Pub Date : 2016-04-06 , DOI: 10.1016/j.surfrep.2016.03.003
Junling Lu , Jeffrey W. Elam , Peter C Stair

Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle “bottom-up” approach for nanostructuring supported catalysts with near atomic precision.

In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle “bottom up” construction of bimetallic (or multiple components) nanoparticles with near atomic precision on supports by ALD is illustrated. Applying metal oxide ALD over metal nanoparticles can be used to precisely synthesize nanostructured metal catalysts. In this part, the surface chemistry of Al2O3 ALD on metals is specifically reviewed. Next, we discuss the methods of tailoring the catalytic performance of metal catalysts including activity, selectivity and stability, through selective blocking of the low-coordination sites of metal nanoparticles, the confinement effect, and the formation of new metal-oxide interfaces. Synthesis of supported metal oxide catalysts with high dispersions and “bottom up” nanostructured photocatalytic architectures are also included. Therein, the surface chemistry and morphology of oxide ALD on oxides and carbon materials as well as their catalytic performance are summarized.



中文翻译:

原子层沉积—高级催化剂“自下而上”合成的顺序自限表面反应

精确控制原子级催化活性位点结构的催化剂合成对于科学理解反应机理和合理设计高性能高级催化剂至关重要。使用原子层沉积(ALD)可以实现这种精确控制。ALD与化学气相沉积(CVD)相似,除了沉积过程分为气态前体分子和基质之间的两个自限性表面反应序列。ALD的独特的自限制特征允许催化材料在原子级的高表面积催化剂载体上共形沉积。通过改变ALD循环的数量和类型,可以将沉积的催化材料精确地构建在载体上。

在这篇综述中,我们总结了最近用ALD合成负载型催化剂的尝试。综述了ALD在氧化物和碳材料上的成核和生长,以精确合成负载型单金属催化剂。强调了通过ALD实现对单金属纳米颗粒粒度的精确控制的能力。所得的具有高分散性和均匀性的金属催化剂通常显示出与通过常规方法制备的那些相当或显着更高的活性。对于负载型双金属催化剂合成,我们总结了控制二级金属选择性沉积在一级金属纳米粒子上而不是在载体上的策略,以排除单金属形成。作为对金属ALD在金属表面上的表面化学和生长行为的评论,我们展示了精确调整双金属金属纳米粒子的尺寸,组成和结构的方法。图示了ALD在载体上具有接近原子精度的双金属(或多种组分)纳米粒子的逐周期“自下而上”构造。在金属纳米颗粒上施加金属氧化物ALD可用于精确合成纳米结构的金属催化剂。在这部分中,Al的表面化学特别回顾了金属上的2 O 3 ALD。接下来,我们讨论通过选择性封闭金属纳米颗粒的低配位位点,限制作用和形成新的金属氧化物界面来调整金属催化剂催化性能的方法,包括活性,选择性和稳定性。还包括具有高分散性和“自下而上”的纳米结构光催化结构的负载型金属氧化物催化剂的合成。在此,总结了氧化物ALD在氧化物和碳材料上的表面化学和形态以及它们的催化性能。

更新日期:2016-04-06
down
wechat
bug