当前位置: X-MOL 学术Surf. Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron injection dynamics in dye-sensitized semiconductor nanocrystalline films
Surface Science Reports ( IF 9.8 ) Pub Date : 2014-11-19 , DOI: 10.1016/j.surfrep.2014.09.003
Akihiro Furube , Ryuzi Katoh , Kohjiro Hara

We have summarized recent ultrafast spectroscopic studies on phenomena associated with dye-sensitization of semiconductor metal oxide nanoparticles, especially TiO2 nanocrystalline film from a surface science perspective with a strong relation to mechanism of electron injection in dye-sensitized solar cells, which are attracting much interest from both viewpoints of pure science and applied science.

A lot of chemical and physical processes are involved in this solar cell, such as light harvesting by molecules and nanostructures, interfacial electron transfer, charge migration in solid and electrolyte, degradation of the materials, and so on. Among them, the very primary process initiated by photoabsorption by sensitizing dye molecules; that is, electron injection from excited adsorbates into the conduction band of semiconductor metal oxides is significantly important, because this process must be 100% efficient with a minimum driving force for high current and voltage generation.

We have first focused on details of experimental methods used in this research area, and then in the following Sections, have organized this review by concentrating on each parameter that influences dynamics of electron injection in dye-sensitized semiconductors. Finally we have emphasized it is important to measure actual DSSCs for the precise comparison between electron injection dynamics and device performance.



中文翻译:

染料敏化的半导体纳米晶体薄膜中的电子注入动力学

我们已经从表面科学的角度总结了最近与半导体金属氧化物纳米颗粒,特别是TiO 2纳米晶薄膜的染料敏化有关的现象的超快光谱研究,该现象与染料敏化太阳能电池中的电子注入机理密切相关。从纯科学和应用科学这两个角度都引起了人们的兴趣。

该太阳能电池涉及许多化学和物理过程,例如分子和纳米结构的光收集,界面电子转移,固体和电解质中的电荷迁移,材料降解等。其中,最基本的过程是通过使染料分子敏化而进行光吸收而启动的。也就是说,从激发的被吸附物向半导体金属氧化物的导带中注入电子非常重要,因为此过程必须具有100%的效率,并且具有最小的驱动力才能产生高电流和高电压。

我们首先关注该研究领域中使用的实验方法的详细信息,然后在以下各节中,通过集中研究影响染料敏化半导体中电子注入动力学的每个参数来组织此综述。最后,我们强调了测量实际DSSC以便对电子注入动力学和器件性能之间进行精确比较的重要性。

更新日期:2014-11-19
down
wechat
bug