当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Desalination using low biofouling nanocomposite membranes: From batch-scale to continuous-scale membrane fabrication
Desalination ( IF 8.3 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.desal.2017.05.007
Sneha Chede , Nelson M. Anaya , Vinka Oyanedel-Craver , Sanam Gorgannejad , Tequila A.L. Harris , Jumana Al-Mallahi , Muna Abu-Dalo , Hani Abu Qdais , Isabel C. Escobar

Abstract This study shows the results of low-biofouling nanocomposite membranes, when using batch-scale fabrication and testing techniques, and when using continuous-scale fabrication and testing techniques. This holistic study begins with nanoparticle manufacturing and selection, then focuses on nanocomposite membrane synthesis and fabrication, and ends with testing and characterization. Nanocomposite membranes loaded with casein-coated silver nanoparticles (Casein-AgNPs) were cast using two approaches, doctor-blade extrusion (batch-scale) and slot-die casting (continuous-scale), to determine their biofouling control properties. In short-term dead-end filtration, cellulose acetate (CA) membranes showed a flux decline of approximately 26% as compared to 20% for nanocomposite (Casein-AgNPs CA) membranes, while the flux recovered after backwashing was higher for the nanocomposite membranes (93%) than for the CA membranes (84%). Cross-flow filtration experiments were conducted for 26 days. No flux decline was observed for nanocomposite membranes and SEM imaging indicated that bacterial cell damage might have occurred. Overall, filtration experiments and membrane testing following biofouling tests showed that laboratory-scale composite membranes operated for 24 h were effective in mitigating biofouling formation. Conversely, continuous-scale nanocomposite membranes operated for 26 days did not show clear improvement in biofouling control, however there was visible damage to cells accumulated on the membrane.

中文翻译:

使用低生物污染纳米复合膜进行海水淡化:从批量规模到连续规模的膜制造

摘要 本研究展示了使用批量制造和测试技术以及使用连续规模制造和测试技术时低生物污染纳米复合膜的结果。这项整体研究从纳米颗粒的制造和选择开始,然后专注于纳米复合膜的合成和制造,并以测试和表征结束。使用两种方法浇铸装载有酪蛋白涂层的银纳米粒子(酪蛋白-AgNPs)的纳米复合膜,即刮刀挤出(批量规模)和狭缝压铸(连续规模),以确定它们的生物污染控制性能。在短期死端过滤中,醋酸纤维素 (CA) 膜的通量下降约 26%,而纳米复合材料 (Casein-AgNPs CA) 膜的通量下降为 20%,而纳米复合膜(93%)在反洗后恢复的通量高于CA膜(84%)。交叉流过滤实验进行了 26 天。纳米复合膜没有观察到通量下降,SEM 成像表明可能发生了细菌细胞损伤。总体而言,生物污垢测试后的过滤实验和膜测试表明,实验室规模的复合膜运行 24 小时可有效减轻生物污垢的形成。相反,连续运行 26 天的纳米复合膜在生物污染控制方面没有表现出明显的改善,但是对膜上积累的细胞有明显的损伤。纳米复合膜没有观察到通量下降,SEM 成像表明可能发生了细菌细胞损伤。总体而言,生物污垢测试后的过滤实验和膜测试表明,实验室规模的复合膜运行 24 小时可有效减轻生物污垢的形成。相反,连续运行 26 天的纳米复合膜在生物污染控制方面没有表现出明显的改善,但是对膜上积累的细胞有明显的损伤。纳米复合膜没有观察到通量下降,SEM 成像表明可能发生了细菌细胞损伤。总体而言,生物污垢测试后的过滤实验和膜测试表明,实验室规模的复合膜运行 24 小时可有效减轻生物污垢的形成。相反,连续运行 26 天的纳米复合膜在生物污染控制方面没有表现出明显的改善,但是对膜上积累的细胞有明显的损伤。
更新日期:2019-02-01
down
wechat
bug