当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In‐Gel Direct Laser Writing for 3D‐Designed Hydrogel Composites That Undergo Complex Self‐Shaping
Advanced Science ( IF 14.3 ) Pub Date : 2017-07-25 , DOI: 10.1002/advs.201700038
Akihiro Nishiguchi 1 , Ahmed Mourran 1 , Hang Zhang 1 , Martin Möller 1
Affiliation  

Self‐shaping and actuating materials inspired by biological system have enormous potential for biosensor, microrobotics, and optics. However, the control of 3D‐complex microactuation is still challenging due to the difficulty in design of nonuniform internal stress of micro/nanostructures. Here, we develop in‐gel direct laser writing (in‐gel DLW) procedure offering a high resolution inscription whereby the two materials, resin and hydrogel, are interpenetrated on a scale smaller than the wavelength of the light. The 3D position and mechanical properties of the inscribed structures could be tailored to a resolution better than 100 nm over a wide density range. These provide an unparalleled means of inscribing a freely suspended microstructures of a second material like a skeleton into the hydrogel body and also to direct isotropic volume changes to bending and distortion motions. In the combination with a thermosensitive hydrogel rather small temperature variations could actuate large amplitude motions. This generates complex modes of motion through the rational engineering of the stresses present in the multicomponent material. More sophisticated folding design would realize a multiple, programmable actuation of soft materials. This method inspired by biological system may offer the possibility for functional soft materials capable of biomimetic actuation and photonic crystal application.

中文翻译:


用于进行复杂自成型的 3D 设计水凝胶复合材料的凝胶内直接激光写入



受生物系统启发的自成型和驱动材料在生物传感器、微型机器人和光学领域具有巨大的潜力。然而,由于微/纳米结构的不均匀内应力设计困难,3D复杂微驱动的控制仍然具有挑战性。在这里,我们开发了凝胶内直接激光写入(凝胶内DLW)程序,提供高分辨率的刻字,其中树脂和水凝胶这两种材料以小于光波长的尺度相互渗透。刻入结构的 3D 位置和机械性能可以在较宽的密度范围内定制为优于 100 nm 的分辨率。这些提供了一种无与伦比的方法,可以将第二种材料(如骨架)的自由悬浮微结构刻入水凝胶体中,并且还可以将各向同性体积变化引导至弯曲和扭曲运动。与热敏水凝胶结合时,相当小的温度变化就可以引起大幅度的运动。通过对多组分材料中存在的应力进行合理设计,可以产生复杂的运动模式。更复杂的折叠设计将实现软材料的多重可编程驱动。这种受生物系统启发的方法可能为能够仿生驱动和光子晶体应用的功能软材料提供可能性。
更新日期:2017-07-25
down
wechat
bug