当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lifetime prediction of rechargeable lithium-ion battery using multi-physics and multiscale model
Journal of Power Sources ( IF 9.2 ) Pub Date : 2024-05-07 , DOI: 10.1016/j.jpowsour.2024.234622
Ruyu Xi , Zeze Mu , Zhiyuan Ma , Weiren Jin , Hua Ma , Kuiming Liu , Jinhan Li , Meng Yu , Dongxu Jin , Fangyi Cheng

Prediction of the state of health (SOH) of lithium-ion batteries (LIBs) is attracting intensive attention in the ever-increasing deployment of consumer electronics and electrical transportation. We develop an electrochemical-thermal-aging coupled model to forecast the lifetime of lithium-ion battery at room and elevated temperatures, in which Arrhenius empirical equation is adopted to describe the bidirectional dependence between electrochemical performance, thermal behavior and aging characteristics. Considering the internal behaviors (ions transport, inter/deintercalation reaction, side reactions) and external performance (voltage, temperature, capacity), our model predicts electrochemical performance and SOH at 25 and 45 °C. The simulated results well coincide with measured data of LIBs with LiNiCoMnO cathode and graphite anode. Parameters including capacity loss, surface film thickness, porosity, area resistance and heat generation are employed and analyzed. Aging reactions lead to the increase of battery resistance and decrease of porosity, which decelerate the lithium-ion transport process and battery degrade performance. Additional resistance results in the temperature rise that in turn accelerates the ion diffusion and side reactions, which reflects the complex electrical, thermal and aging interplay. This modeling methodology provides effective strategy for the design and optimization of lithium-ion batteries.

中文翻译:


使用多物理场和多尺度模型预测可充电锂离子电池的寿命



在消费电子产品和电动交通的不断增长的部署中,锂离子电池(LIB)的健康状态(SOH)预测引起了人们的广泛关注。我们开发了一种电化学-热老化耦合模型来预测锂离子电池在室温和高温下的寿命,其中采用阿伦尼乌斯经验方程来描述电化学性能、热行为和老化特性之间的双向依赖性。考虑到内部行为(离子传输、嵌入/脱嵌反应、副反应)和外部性能(电压、温度、容量),我们的模型预测了 25 和 45 °C 下的电化学性能和 SOH。模拟结果与 LiNiCoMnO 正极和石墨负极的锂离子电池的测量数据非常吻合。采用并分析了容量损失、表面膜厚度、孔隙率、面积电阻和发热等参数。老化反应导致电池电阻增加和孔隙率降低,从而减慢锂离子传输过程并降低电池性能。额外的电阻会导致温度升高,进而加速离子扩散和副反应,这反映了复杂的电、热和老化相互作用。该建模方法为锂离子电池的设计和优化提供了有效的策略。
更新日期:2024-05-07
down
wechat
bug