当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Range‐separated density functional theory using multiresolution analysis and quantum computing
Journal of Computational Chemistry ( IF 3 ) Pub Date : 2024-05-06 , DOI: 10.1002/jcc.27384
Nicolas Poirier 1, 2 , Jakob S. Kottmann 3 , Alán Aspuru‐Guzik 4, 5, 6, 7 , Luc Mongeau 1 , Alireza Najafi‐Yazdi 1, 2
Affiliation  

Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functional theory (RS‐DFT). The use of RS‐DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis‐set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy.

中文翻译:

使用多分辨率分析和量子计算的范围分离密度泛函理论

对于量子化学中的特定问题,量子计算机预计将优于经典计算机。这种计算仍然很昂贵,但可以通过分子系统的划分来降低成本。在本研究中,分区是通过范围分离密度泛函理论(RS-DFT)实现的。与单独使用波函数理论 (WFT) 相比,RS-DFT 的使用减少了基组大小和基态能量的活动空间大小依赖性。使用成对自然轨道(PNO)代替规范分子轨道(MO)会产生更紧凑的量子位哈密顿量。为了测试该策略,采用了称为多分辨率分析 (MRA) 的基组独立框架来生成 PNO。使用变分量子本征求解器对许多分子进行了测试。结果表明,所提出的方法减少了达到目标能量精度所需的量子位数量。
更新日期:2024-05-06
down
wechat
bug